

National Collaborating Centre for Methods and Tools

Centre de collaboration nationale des méthodes et outils

Rapid Review: What is the evidence for COVID-19 transmission in acute care settings?

Prepared by: The National Collaborating Centre for Methods and Tools

Date: December 11, 2020

Suggested Citation:

National Collaborating Centre for Methods and Tools. (2020, December 11). *Rapid Review: What is the evidence for COVID-19 transmission in acute care settings?* https://www.nccmt.ca/knowledge-repositories/covid-19-rapid-evidence-service.

<u>Please Note</u>: An update of this review may be available. Access the most current version of this review by visiting the National Collaborating Centre for Methods and Tools COVID-19 Rapid Evidence Service at the above link.

© 2020. National Collaborating Centre for Methods and Tools, McMaster University. All rights reserved.

The National Collaborating Centre for Methods and Tools (NCCMT) is hosted by McMaster University and funded by the Public Health Agency of Canada. The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada.

This Rapid Review is for general information purposes only. The information provided in this Rapid Review is provided "as is" and McMaster University makes no warranties, promises and/or representations of any kind, expressed or implied, as to the nature, standard, accuracy, completeness, reliability or otherwise of the information provided in this Rapid Review, nor to the suitability or otherwise of the information to your particular circumstances. McMaster University does not accept any responsibility or liability for the accuracy, content, completeness, legality, reliability or use of the information contained in this Rapid Review. This review was supported by funding from nib Health. The funder had no role in collection or interpretation of data.

The authors declare they have no conflicts of interest to report.

Executive Summary

Background

Evidence related to COVID-19 transmission in acute care settings has implications for understanding risks for staff, patients and communities, infection prevention and control measures, and potential mitigation strategies.

This rapid review was produced to support public health decision makers' response to the coronavirus disease 2019 (COVID-19) pandemic. This review seeks to identify, appraise, and summarize emerging research evidence to support evidence-informed decision making.

This rapid review includes evidence available up to November 13, 2020 to answer the questions: What is known about how and by whom COVID-19 is introduced and transmitted within acute care settings? What factors influence the introduction and spread of COVID-19 in acute care settings? What control measures have been successful in acute care settings to prevent primary and secondary cases of COVID-19?

Abbreviations used in this report are:

- HCW: Health care worker(s)
- PPE: Personal protective equipment
- FFP1: Filtering face piece 1 filters at least 80% airborne particles
- FFP2: Filtering face piece 2 filters at least 94% of airborne particles
- FFP3: Filtering face piece 3 Filters at least 99% of airborne particles

Key Points

Introduction and Transmission of COVID-19

- Contact tracing in acute care settings is often unable to identify the source of infection (the index case), particularly for cases among health care workers (HCW). The nature of the work in acute care means that HCW cases have multiple contacts, with patients, staff and community/family members, making definitive contact tracing difficult. As a result, conclusions drawn from the available evidence about the transmission of COVID-19 in health care settings must be considered with caution.
- There are reports of transmission in acute care settings, but the frequency is not known and is dependent on factors in the setting including IPAC measures, levels of community transmission, among other variables.
- The available evidence related to transmission of COVID-19 in acute care settings shows a low risk of HCW transmitting infection to HCW or patients when PPE is used (e.g., masks, gloves, gowns, eye protection). When PPE is routinely in use in the setting, HCW are more likely to be infected by HCW than by patients, and patients are more likely to be infected by patients than by HCW. The overall certainty of this evidence is very low and findings are very likely to change as more evidence accumulates.

Risk Factors

- In studies that explored HCW with known exposures, close contact with an infected colleague or in a shared workplace appeared to increase risk of infection compared to exposure to an infected patient. The overall certainty of this evidence is very low, and findings are very likely to change as more evidence becomes available.
- Lack of access to or improper use of PPE is associated with increased risk of infection. The overall certainty of the evidence is moderate, so while the direction of effect is less likely to change as more evidence becomes available, the size, or magnitude, of effect may change.
- There is no clear association between demographic characteristics, a specific role in an acute care setting (e.g., physician, nurse, administrative staff, etc.) or work in a specific department or location in a hospital (e.g., emergency department, surgical ward, etc.) and risk of COVID-19 infection in HCW in acute care settings. The overall certainty of the evidence is low, and findings may change as more evidence accumulates.

Protective Strategies

- Demonstrated strategies to control the spread of infection include:
 - Use of PPE (masks, gloves, gowns, eye protection)
 - Universal workplace HCW testing
 - Distancing of 1m or more
 - Triaging areas are associated with low levels of infection, although no specific comparisons are available.

The overall certainty of this evidence is very low and findings are very likely to change as more evidence accumulates.

Overview of Evidence and Knowledge Gaps

- The designs of the included studies are observational (primarily cross-sectional and case-control designs which are high risk of bias) and do not control for the level of virus circulating in community settings. The majority of studies examined univariate relationships between transmission or risk factors and COVID-19 infection, without control for other confounding factors and other sources of exposure.
- The majority of identified studies include data collected in the early phases of the COVID-19 pandemic, during which lack of access to proper PPE was noted in some jurisdictions. As the understanding of the route of transmission and effective IPAC measures has evolved considerably, the applicability of these data to the current context may be limited. For example, several studies note that data were collected prior to widespread mask use in the hospital setting.
- There are few recent syntheses directly relevant to these questions and included studies were primarily completed during the first wave of the pandemic. Although not done as part of this review, it may be valuable to conduct a jurisdictional scan of current rates of COVID-19 among HCW, and patients in hospital, given that implementation of robust IPAC measures appears to coincide with reduced transmission within health care settings in comparison to community settings, where PPE is not generally worn.
- The majority of studies explore transmission to and spread among HCW. Fewer studies investigate transmission of COVID-19 to patients already in hospital for non-COVID-19 reasons.

- There are imprecise and variable definitions of "health care worker" and "staff" in the available studies. Included participants often hold roles without direct patient contact, but in which contact with other hospital personnel is frequent (e.g., cleaning, food service, administration). Greater specificity in the use of these terms would improve the ability to identify specific risk pathways in acute care settings.
- Prevalence of confirmed COVID-19 infection and seroprevalence using antibody tests was highly variable across included studies. This suggests that a number of contextual factors (such as what IPAC measures are in place within and outside of hospital settings, rates of community transmission, etc.) are likely very important. As these factors were not controlled for in analyses, it is very hard to compare findings from different jurisdictions, and findings from other countries may not be applicable to the Canadian context.

Introduction and Transmission of COVID-19

- In 6 studies of forward contact tracing (in which a case is identified and subsequent infections among their contacts are traced) of infected HCW, a total of 69 index HCW cases were linked to 18 HCW cases and 12 patient cases. Three of these studies identified no or inadequate use of PPE and accounted for 9 HCW infections and 2 patient infections. In the remaining 3 studies, a Canadian study reported 5 HCW cases with no forward transmission to staff or patients; a Chinese study reported 1 index HCW case linked to 4 HCW cases; a Polish study reported on an outbreak with 1 index HCW case linked to 5 HCW and 10 patient cases.
- In 1 study of forward contact tracing of infected patients, 28 infected patients in a respiratory ward were linked to no HCW infections and possibly to 1 patient infection in a patient with other exposures.
- Two studies of HCW infections identify the source of infection through viral sequencing studies of the strain of COVID-19, and both of these studies conclude that the HCW infections were community-acquired.
- In 12 studies reporting on backward contact tracing (in which a case is identified, and their prior exposures are examined) of HCW infections, 5 were in settings with no or inadequate PPE use. Of the remaining 7 studies, specific sources of infection were identified in 4. In these 4 studies, there were 291 HCW cases, 85 of which were traced to HCW sources and 94 of which were traced to patient sources, with 179 having no identified source.
- Transmission from patient to HCW is infrequent in settings in which PPE is used. In a review of secondary attack rates (SAR) of COVID-19 in health care settings where the index case was an infected patient, the pooled SAR was 0.7% (95% CI: 0.4%-1.0%), with most individual studies reporting a SAR of < 2%.
- In 2 studies reporting on backward contact tracing of a total of 111 patient infections, 5 infections were traced to HCW and 85 were traced to patients, with the remaining 21 cases having no identified source.
- HCW infections are frequently identified among staff working in roles with no patient contact. This finding suggests that transmission to these staff is happening through HCW or community contacts.
- Studies of HCW beliefs about the source of their infection show that they most often consider the source of their infection to be patients.

• A low quality review shows no clear evidence to date of transmission of COVID-19 associated with HVAC systems in health care facilities, based on 4 COVID-19-specific included studies with unknown risk of bias.

Risk Factors

- The risk factors for transmission explored within individual studies were highly variable, making cross-study comparisons difficult. Similarly, when the same variable was measured in different studies (e.g., type of HCW sometimes including staff not responsible for patient care such as administrative staff, laboratory workers, custodians, porters; physicians and nurses sometimes divided by department or specialty, etc.) the categories were quite different.
- Findings that inadequate access to and improper use of PPE are risk factors are in line with findings from studies on protective strategies, highlighting the importance of proper PPE in reducing transmission.

Protective Strategies

- Several reviews of protective strategies included studies of infections other than COVID-19 (e.g., SARS, MERS, H1N1). It was not always possible to separate out the findings from COVID-19-specific studies.
- Several studies of protective strategies do not include comparative data, so the specific effectiveness of the strategy relative to other measures is unknown.
- Demonstrated strategies to control the spread of infection include:
 - Use of PPE (masks, gloves, gowns, eye protection), although one moderate quality study found that FFP2 PPE was not superior to FFP1 PPE (e.g., surgical masks) at preventing COVID-19 infections.
 - Universal workplace HCW testing
 - Distancing of 1m or more
 - Triaging areas are associated with low levels of infection, although no specific comparisons are available.
 - Modelling studies show that:
 - Early testing of suspected cases (with results within 8 hours) and a quarantine unit for new patients were the most effective measures.
 - Front-door screening was moderately effective.
 - PPE (even less effective PPE) reduced infections, compared to no PPE.
 - Masking is superior to distancing.
 - Weekly testing of patients and HCW reduced infections. Weekly testing of HCW reduced transmission by 24%, and daily testing by 64%.
 - Smaller cohorts of suspected cases reduced infections, compared to larger cohorts.
 - Isolating suspected cases in single rooms reduced transmission compared to quarantine wards.
- Strategies with no evidence of control of the spread of infection include:
 - Aerosol boxes do not protect HCW from aerosolized particles.
 - Barrier enclosures may create additional risk.
 - Powered air purifying respirators (PAPRs) are not superior to other protective respiratory equipment when performing airway procedures.
 - Prophylactic hydroxychloroquine among HCW has no demonstrated effect.

Methods

Research Questions

- 1. What is known about how and by whom COVID-19 is introduced and transmitted within acute care settings?
- 2. What factors influence the introduction and spread of COVID-19 in acute care settings?
- 3. What control measures have been successful in acute care settings to prevent primary and secondary cases of COVID-19?

Search

On November 13, 2020, the following databases were searched using key terms doctor, physician, clinician, nurse, nursing, practitioner, "healthcare worker", "health care worker", "primary care", "acute care", nosocomial:

- Pubmed's curated COVID-19 literature hub: LitCOVID
- World Health Organization's <u>Global literature on coronavirus disease</u>
- <u>COVID-19 Living Overview of the Evidence (L-OVE)</u>
- <u>McMaster Health Forum</u>
- <u>Prospero Registry of Systematic Reviews</u>
- NCCMT <u>COVID-19 Rapid Evidence Reviews</u>
- MedRxiv preprint server
- NCCEH Environmental Health Resources for the COVID-19 Pandemic
- NCCID <u>Disease Debrief</u>
- Uncover (USHER Network for COVID-19 Evidence Reviews)
- Alberta Health Services
- Oxford COVID-19 Evidence Service
- Centers for Disease Control and Prevention's Morbidity and Mortality Weekly Report
- Institut national de santé publique du Québec (INSPQ)

A copy of the full search strategy is available at this <u>link</u>.

Study Selection Criteria

The search results were first screened for recent guidelines and syntheses. Single studies were included if no syntheses were available on the specific topic, or in the following instances: relevant single studies missing from included syntheses; single studies published after the search was conducted in the included syntheses. English-language, peer-reviewed sources and sources published ahead-of-print before peer review were included. Surveillance sources were excluded. When available, findings from syntheses and clinical practice guidelines are presented first, as these take into account the available body of evidence and, therefore, can be applied broadly to populations and settings.

Question 1: What is known about how and by whom COVID-19 is introduced and transmitted within acute care settings?

	Inclusion Criteria	Exclusion Criteria
Population	Staff, patients, visitors	
Intervention	Index case	
Comparisons		
Outcomes	Secondary infection and/or	
	outbreaks, clusters	Non-COVID -related
Setting	Acute care: hospitals, emergency	
	rooms	Other health settings

Question 2: What factors influence the introduction and spread of COVID-19 in acute care settings?

	Inclusion Criteria	Exclusion Criteria
Population	Staff, patients, visitors	
Intervention	Individual and organizational risk factors (including modifiable and non-modifiable)	
Comparisons		
Outcomes	COVID-19 infection and/or secondary infection and/or outbreaks	Non-COVID -related
Setting	Acute care: hospitals, emergency rooms	Other health settings

Question 3: What control measures have been successful in acute care settings to prevent primary and secondary cases of COVID-19?

	Inclusion Criteria	Exclusion Criteria
Population	Staff, patients, visitors	
Intervention	Strategies for spread & control	
Comparisons		
Outcomes	COVID-19 infection and/or secondary infection and/or	
	outbreaks	Non-COVID -related
Setting	Acute care: hospitals, emergency	
	rooms	Other health settings

Data Extraction and Synthesis

Data relevant to the research question, such as study design, setting, location, population characteristics, interventions or exposure and outcomes were extracted when reported. We synthesized the results narratively due to the variation in methodology and outcomes for the included studies.

Appraisal of Evidence Quality

We evaluated the quality of included evidence using critical appraisal tools as indicated by the study design below. Quality assessment was completed by one reviewer and verified by a second reviewer. Conflicts were resolved through discussion. For some of the included evidence a suitable quality appraisal tool was not found, or the review team did not have the expertise to assess methodological quality. Studies for which quality appraisal has not been conducted are noted within the data tables.

Study Design	Critical Appraisal Tool
Synthesis	Assessing the Methodological Quality of Systematic Reviews (AMSTAR)
	AMSTAR 1 Tool
Case Control	Joanna Briggs Institute (JBI) <u>Checklist for Case Control Studies</u>
Case Series	Joanna Briggs Institute (JBI) <u>Checklist for Case Series</u>
Case Report	Joanna Briggs Institute (JBI) <u>Checklist for Case Reports</u>
Cohort	Joanna Briggs Institute (JBI) <u>Checklist for Cohort Studies</u>
Cross-sectional	Joanna Briggs Institute (JBI) Checklist for Analytical Cross Sectional
	<u>Studies</u>
Randomized	Joanna Briggs Institute (JBI) Checklist for Randomized Controlled Trials
Controlled Trial	

Completed quality assessments for each included study are available on request.

The Grading of Recommendations, Assessment, Development and Evaluations (<u>GRADE</u>) approach was used to assess the certainty in the findings based on eight key domains.

In the GRADE approach to quality of evidence, **observational studies**, as included in this review, provide **low quality** evidence, and this assessment can be further reduced based on other domains:

- High risk of bias
- Inconsistency in effects
- Indirectness of interventions/outcomes
- Imprecision in effect estimate
- Publication bias

and can be upgraded based on:

- Large effect
- Dose-response relationship
- Accounting for confounding.

The overall certainty in the evidence for each outcome was determined taking into account the characteristics of the available evidence (observational studies, some not peer-reviewed, unaccounted-for potential confounding factors, different tests and testing protocols, lack of valid comparison groups). A judgement of 'overall certainty is very low' means that the findings are very likely to change as more evidence accumulates.

Findings

Summary of Evidence Quality

This document includes 11 completed syntheses and 52 single studies for a total of 63 publications included in this review. The quality of the evidence included in this review is as follows:

Research Question	Evidence included		Overall certainty in evidence based on completed evidence
What is known about how and by whom COVID-19 is introduced and transmitted	Completed syntheses Single studies	2 25	Very low
within acute care settings? What factors influence the introduction and spread of COVID-19 in acute care settings?	Completed syntheses Single studies	4 17	 Index case: Very low PPE: Moderate Role, clinical location, demographics: Very low
What control measures have been successful in acute care settings to prevent primary and secondary cases of COVID-19?	Completed syntheses Single studies	6 14	Very low

Warning

Given the need to make emerging COVID-19 evidence quickly available, many emerging studies have not been peer reviewed. As such, we advise caution when using and interpreting the evidence included in this rapid review. We have provided a summary of overall certainty of the evidence to support the process of decision making. Where possible, make decisions using the highest quality evidence available.

A number of mathematical modelling studies are emerging related to COVID-19, including 5 cited in this review. We did not assess the methodological quality of modelling studies. Due to the highly technical nature of these studies, we highly recommend consulting a content-area expert to inform decision making. While these studies may provide important estimates, their ultimate usefulness depends on the quality of the data that is entered into the model. Given the constantly evolving nature and changing understanding of COVID-19 around the world, a high degree of caution is warranted when interpreting these studies, and the range of confidence intervals rather than single effect estimates should be considered.

Question 1: What is known about how and by whom COVID-19 is introduced and transmitted within acute care settings?

Table 1: Syntheses

Reference	Date Released	Description of Included Studies	Summary of Findings	Quality Rating: Synthesis	Quality Rating: Included Studies
Koh, W. C., Naing, L., Chaw, L., Rosledzana, M. A., Alikhan, M. F., Jamaludin, S. A., Wong, J. (2020). <u>What do</u> we know about SARS- <u>CoV-2 transmission? A</u> <u>systematic review and</u> <u>meta-analysis of the</u> <u>secondary attack rate and</u> <u>associated risk factors</u> . <i>PLoS One, 15</i> (10), e0240205-e0240205.	Oct 8, 2020 (Search completed Jul 25, 2020)	18 studies examining transmission rates in health care settings	 This review examined secondary attack rates (SAR) of COVID-19 in various settings, including health care. 18 studies were identified where the index case in health care was an infected patient. Pooled SAR was 0.7% (95% Confidence Interval (CI): 0.4%-1.0%), with most individual studies reporting a SAR of < 2%. There was some variation in who was tested between studies (only symptomatic vs all close contacts) and who was classified as a close contact (usually HCW and other patients). 	High	High
Alberta Health Services. (2020, Jun 5). <u>Has there</u> <u>been documented</u> <u>transmission of SARS-</u> <u>CoV-2 virus (or similar</u> <u>viruses) through heating,</u> <u>ventilation, and air</u> <u>conditioning (HVAC)</u> <u>systems in hospitals or</u> <u>nonhospital settings?</u>	Jun 5, 2020 (Search completed May 11, 2020)	 This review included: 12 studies 20 additional references (primary and grey literature) 4 studies specifically addressed COVID-19 	 This rapid evidence report reviewed the transmission of COVID-19 in Heating, Ventilation and Air Conditioning (HVAC) systems in hospitals and nonhospital settings. There is no clear evidence to date of transmission of COVID-19 associated with HVAC systems in hospitals or health care facilities, although there is a mechanistic possibility of this occurring. Studies that have identified the presence of viral RNA in procedure-generated aerosols have not demonstrated viable virus that would be capable of infecting susceptible hosts. 	Low	Not reported

Table 2: Single Studies

Reference	Date Released	Study Design	Participants	Setting and Timing	Summary of findings	Quality Rating:
Studies of forward transmission				0		Ŭ
Cao, G., Tang, S., Yang, D., Shi, W., Wang, X., Wang, H., Ma, L. (2020). <u>The</u> <u>Potential transmission of</u> <u>SARS-CoV-2 from patients</u> <u>with negative RT-PCR swab</u> <u>tests to others: two related</u> <u>clusters of COVID-19</u> <u>outbreak</u> . <i>Japanese Journal</i> <i>of Infectious Diseases, 73</i> (6), 399-403.	Nov 30, 2020	Case report	4 HCW	Hospital, China Jan 2020	4 cases of HCW COVID-19 were identified on a ward in a hospital in China. The index case was a HCW who was symptomatic but had repeatedly tested negative for COVID-19 infection. The index case worked while symptomatic.	Moderate
Baker, M. A., Fiumara, K., Rhee, C., Williams, S. A., Tucker, R., Wickner, P., Klompas, M. (2020). Low risk of COVID-19 among patients exposed to infected healthcare workers. <i>Clinical</i> <i>Infectious Diseases</i> . Epub ahead of print.	Aug 28, 2020	Cohort	Patients	Medical Centre, Boston Mar 1 to Jun 10, 2020	 238 patients were identified as having been exposed to COVID-19 infected HCW (n=60). Among 92 patients tested, 2 tested positive: 1 was exposed to a pre-symptomatic physician for 30 minutes in an outpatient setting. Neither the physician nor patient were masked. 1 was exposed for >10 minutes to a nurse in a peri-operative setting. Only the nurse was masked. This patient also had close household contact with a case, which likely was exposure source. Overall, 0.4% of infections were attributable to HCW exposure. No infections were attributed to patient-to-patient transmission. A few patients had more than one exposure. 	High

Mponponsuo, K., Kerkerian, G., Somayaji, R., Missaghi, B., Vayalumkal, J. V., Larios, O. E., Conly, J. (2020). Lack of nosocomial transmission to exposed inpatients and coworkers in an investigation of five SARS-CoV-2-infected healthcare workers. Infection Control & Hospital Epidemiology. Epub ahead of print	Aug 3, 2020	Case series	HCW	Calgary, Alberta Mar 1 and Apr 15, 2020	Between epidemiologic investigation of 5 HCW cases with community-acquired COVID-19 was conducted to identify patient and colleague close contacts who had multiple high-risk exposures. A total of 39 HCW and 20 patient close contacts were identified, of whom none developed infection (16 HCW and 22 patients were tested; the remainder did not report any symptoms and were considered not infected).	Moderate
of print. Biernat, M. M., Zinczuk, A., Biernat, P., Bogucka- Fedorczuk, A., Kwiatkowski, J., Kalicinska, E., Wrobel, T. (2020). <u>Nosocomial</u> <u>outbreak of SARS-CoV-2</u> <u>infection in a haematological</u> <u>unit - high mortality rate in</u> <u>infected patients with</u> <u>haematologic malignancies</u> . <i>Journal of Clinical Virology</i> . Epub ahead of print.	Aug 1, 2020	Cohort	Patients and HCW	Poland Apr 7 to May 7, 2020	During an outbreak of COVID-19 on a haematological unit after exposure to an index HCW case, among 20 HCW on the unit, 5 developed infection as confirmed through RT- PCR testing. Among 19 patients on the unit, 10 developed infection as confirmed through RT- PCR testing.	High
Knoll, R. L., Klopp, J., Bonewitz, G., Grondahl, B., Hilbert, K., Kohnen, W., Gehring, S. (2020). <u>Containment of a large</u> <u>SARS-CoV-2 outbreak</u> <u>among healthcare workers</u> <u>in a pediatric intensive care</u> <u>unit</u> . <i>The Pediatric Infectious</i> <i>Disease Journal, 39</i> (11), e336-e339.	Jul 19, 2020	Case report	HCW	Pediatric Intensive Care Unit (PICU), Germany Mar 13 to Apr 27, 2020	On March 13, 2020, a positive HCW case of COVID-19 was identified in the PICU. Point of care testing was performed on 91 HCW identified as contacts. A total of 8 additional HCW cases (19.5%) were identified by March 23, 2020. All infected HCW were working at the PICU and had direct unprotected contact with each other prior to March 13, 2020. An infection rate of 16.3% was calculated. Mass screening undertaken in the hospital from April 14 to 27, 2020 revealed only one additional case. This case had no connection to the PICU, and infection was attributed to community transmission.	High

Prasitsirikul, W., Pongpirul, K., Pongpirul, W. A., Panitantum, N., Ratnarathon, A. C., & Hemachudha, T. (2020). <u>Nurse infected with</u> <u>COVID-19 from a provisional</u> <u>dengue patient</u> . <i>Emerging</i> <u>Microbes & Infections, 9</u> (1).	Jun 15, 2020	Case report	HCW	Hospital, China Jan 30, 2020	A HCW was exposed to a symptomatic patient in hospital while performing venipuncture without appropriate PPE. The patient was later diagnosed with COVID-19 infection. The HCW subsequently became infected. No forward transmission of virus was documented among hospital or community close contacts.	High
Studies of forward transmission	on by patients					
Wee, L. E. I., Sim, X. Y. J.,	Sep 4, 2020	Cohort	HCW	Hospital,	A hospital in Singapore evaluated its	High
Conceicao, E. P., Aung, M.				Singapore	experience with managing unsuspected	
K., Tan, K. Y., Ko, K. K. K.,			In-patients		COVID-19 infection in 28 patients admitted to	
Ling, M. L. (2020).				Feb 7 to May	respiratory surveillance wards instead of a	
Containing COVID-19				7, 2020,	COVID-19 ward.	
outside the isolation ward:						
The impact of an infection					There were no infections among staff close	
control bundle on					contacts; one exposed patient (who had other	
environmental					additional exposures) developed infection.	
contamination and						
transmission in a cohorted						
general ward. American						
Journal of Infection Control,						
<i>48</i> (9), 1056-1061.						

Studies of HCW Contact tracin	g with genom	e/RNA testir	ng			
Sikkema, R. S., Pas, S. D.,	Jul 2, 2020	Cross-	HCW	3 hospitals,	1796 HCW (15% of the total number of staff)	High
Nieuwenhuijse, D. F., Toole,		sectional		Netherlands	were voluntarily screened for COVID-19.	
Á., Verweij, J., van der			Patients			
Linden, A., Koopmans,				Mar 2 to Mar	Genome sequences were completed on 60	
M. P. G. (2020). <u>COVID-19 in</u>				12, 2020,	samples. The noted patterns were consistent	
health-care workers in three					with multiple introductions into the hospitals	
hospitals in the south of the					through community-acquired infections and	
Netherlands: A cross-					local amplification in the community.	
sectional study. The Lancet						
Infectious Diseases, 20(11),					856 patients were also screened and tested.	
1273-1280.					 96 HCW (5%) tested positive. 	
					Of these, 20 HCW did not have direct	
					contact with patients; however, 6 had	
					contact with colleagues who had also	
					tested positive.	
					Many HCW had numerous potential	
					exposures in the community.	
					32% reported close contact with a	
					confirmed case in the 14 days prior to	
					onset of symptoms including patients and	
					colleagues in the hospital, household	
					members or persons outside the hospital,	
					including at a carnival which could have	
					been a super-spreader event.	
					Of 856 patients tested, 23 (3%) were positive.	

Nasia, S., Gage, K. M., Katarina, M. B., Thomas, C. F., & David, H. O. C. (2020). Determining the source of	May 1, 2020	Case report	HCW	Hospital, Wisconsin USA	A HCW case of COVID-19 was identified in hospital after developing symptoms and seeking out testing. This HCW case had hospital exposure to two COVID-19 positive	High PREPRINT
<u>transmission of SARS-CoV-2</u> <u>infection in a healthcare</u> <u>worker</u> . <i>Preprint</i> .				Mar 21 to Apr 14, 2020	patients while working in full PPE. No infection control breaches were identified. The worker also had community exposure to a symptomatic household member who was not tested for COVID-19.	
					As part of the epidemiologic investigation, samples were collected from the case, the two patient cases and the household member whose specimen resulted as positive. Based on viral RNA sequencing the likely source of infection was the family member, with transmission occurring outside the hospital, though other sources could not be ruled out.	
Studies of HCW Contact tracin	g	•	•			•
Buising, K. L., Williamson, D., Cowie, B. C., MacLachlan, J., Orr, E., MacIsaac, C., Marshall, C. (2020 <u>). A</u> <u>hospital-wide response to</u> <u>multiple outbreaks of</u> <u>COVID-19 in health care</u> <u>workers: Lessons learned</u> <u>from the field</u> . <i>The Medical</i> <i>Journal of Australia</i> . Epub ahead of print.	Nov 15, 2020	Case report	HCW	Hospital, Melbourne, Australia Jul 1 and Aug 31, 2020	 262 cases of COVID-19 infection were identified among staff. 28.1% of affected staff worked in "hot wards" – designated COVID-19 wards. Clusters of infection occurred on three occasions on wards outside of designated "hot wards". There was anecdotal reporting by staff of transmission events being associated with various patient behaviours such as shouting and vigorous coughing. 	High
					HCW contact with COVID-19 cases outside the hospital was infrequent but did occur (i.e., HCW living together).	

Wee, L. E., Sim, X. Y. J., Conceicao, E. P., Aung, M. K., Goh, J. Q., Yeo, D. W. T., . Venkatachalam, I. (2020). <u>Containment of COVID-19</u> <u>cases among healthcare</u> <u>workers: The role of</u> <u>surveillance, early detection,</u> <u>and outbreak management</u> . <i>Infection Control and</i> <i>Hospital Epidemiology</i> , 41(7), 765-771.	Nov 5, 2020	Case report	HCW	Hospital, Singapore Jan 1 and Apr 22, 2020	 Epidemiological investigation of 14 cases of COVID-19 among HCW determined that: 10 cases were acquired in the community 1 staff cluster occurred in a shared office in a non-clinical area of the hospital 1 staff cluster was family members 2 staff clusters were cases who shared a dormitory 	High
Alajmi, J., Jeremijenko, A. M., Abraham, J. C., Alishaq, M., Concepcion, E. G., Butt, A. A., & Abou-Samra, AB. (2020). <u>COVID-19 infection</u> <u>among healthcare workers</u> <u>in a national healthcare</u> <u>system: The Qatar</u> <u>experience</u> . <i>International</i> <i>Journal of Infectious</i> <i>Diseases, 100</i> , 386-389.	Nov 1, 2020	Cross- sectional	HCW	14 hospitals with over 28,000 staff Qatar Mar 10 to Jun 24, 2020	 16,912 staff across 14 hospitals were tested for COVID-19. Across all hospitals 1,799 (10.6%) staff tested positive. Epidemiologic investigation of staff cases revealed: 9.5% of positive staff reported close contact with a case (family member or roommate). 5% reported acquiring infection while working at a COVID-19 designated facility; 95% reported working at a non-COVID-19 facility. Of these cases who were not working in a COVID-19 hospital, 45% reported exposure to an infected colleague and 29% reported exposure to an infected patient. Among HCW cases at designated COVID- 19 facilities, 82% used full PPE, at all times. Among those HCW cases working at a non- designated facility, 68% reported using PPE as directed. 	Low

Tubiana, S., Burdet, C., Houhou, N., Thy, M., Manchon, P., Blanquart, F., . Duval, X. (2020). <u>High-risk</u> <u>exposure without personal</u> <u>protective equipment and</u> <u>infection with SARS-CoV-2</u> <u>in healthcare workers:</u> <u>Results of the CoV-</u> <u>CONTACT prospective</u> <u>cohort</u> . <i>Preprint</i> .	Sep 18, 2020	Cohort	HCW	Hospital, Paris, France Feb 5 to May 30, 2020	 154 HCW had high-risk exposure(s) to 44 confirmed COVID-19 index cases (70 were exposed to in-patients and 95 were exposed to colleagues) without having worn appropriate PPE. At day 30 following exposure, 43.9% had a confirmed or suspected infection. 	High PREPRINT
Kim, S. W., Jo, S. J., Lee, H., Oh, J. H., Lim, J., Lee, S. H., . Lee, J. (2020). <u>Containment of a healthcare- associated COVID-19</u> <u>outbreak in a university</u> <u>hospital in Seoul, Korea: A</u> <u>single-center experience</u> . <i>PLoS One</i> . Epub ahead of print.	Aug 14, 2020	Cross- sectional	Patients, Caregivers, and HCW	Hospital, Korea Feb 21 to Feb 28, 2020	After a hospital staff case was identified, 3,091 specimens were tested for COVID-19 among patients and staff in hospital. 2 in-patient and 1 caregiver hospital-associated cases were identified. The 3 confirmed in-hospital cases were all linked to the same ward. There were no medical staff cases identified on this ward.	High
Contejean, A., Leporrier, J., Canoui, E., Alby-Laurent, F., Lafont, E., Beaudeau, L., Kerneis, S. (2020). <u>Comparing dynamics and determinants of SARS-CoV-2</u> <u>transmissions among health</u> <u>care workers of adult and</u> <u>pediatric settings in central</u> <u>Paris</u> . <i>Clinical Infectious</i> <i>Diseases</i> . Epub ahead of print.	Jul 15, 2020	Cross- sectional	HCW	Hospital in Paris – 2 units (adult and pediatric) Feb 24 to Apr 10, 2020	 1344 symptomatic HCW were tested for COVID-19 and 373 (28%) were positive. Unit specific attack rates were 3.2% and 2.3% for adult and pediatric units respectively, with an overall attack rate of 2.8%. Epidemiologic investigations reported the following findings for 336 HCW participants: 70% had direct patient contact, 22% in dedicated COVID-19 units. In the adult setting, HCW reported multiple exposures to COVID-19 patients without PPE (25% vs 15% in the pediatric setting). Some HCW reported having exposures to patients or colleagues without PPE, even after a masking policy was implemented 	High

Garzaro, G., Clari, M., Ciocan, C., Grillo, E., Mansour, I., Godono, A., Pira, E. (2020). <u>COVID-19</u> <u>infection and diffusion</u> <u>among the healthcare</u> <u>workforce in a large</u> <u>university-hospital in</u> <u>northwest Italy</u> . <i>La Medicina</i> <i>del lavoro, 111</i> (3), 184-194.	Jun 26, 2020	Case report	HCW	4 hospitals in Italy Mar 6 to Mar 21, 2020	 From 830 HCW with high risk or medium risk exposures to COVID-19 were tested. Of these, 80 tested positive (9.6%). Investigations revealed the following: 57.6% reported exposure to a case, the majority were reported to be colleague cases. Social Network Analysis showed that HCW who had multiple contacts with other HCW were an important source of transmission. When patients were the source of infection, the cluster was limited to the area in which they were admitted, and spread was limited. 	High
Lai, X., Wang, M., Qin, C.,	May 21, 2020	Case	HCW	Hospital, China	110 HCW tested positive for COVID-19. The	Moderate
Tan, L., Ran, L., Chen, D., Wang, W. (2020).	2020	series		China	infection rate was 1.1% among HCW.	
<u>Coronavirus disease 2019</u>				Jan 1 to Feb	Presumed sources of infection include:	
(COVID-2019) infection				9, 2020	General clinics or wards (63.3%)	
among health care workers					• Community (12.7%)	
and implications for prevention measures in a					• Fever clinics or wards (6.4%)	
tertiary hospital in Wuhan,					Contact with positive patients (59.1%) and	
China. JAMA Network Open,					colleagues with infection (10.9%) as well as	
<i>3</i> (5), e209666					community-acquired infection (12.7%) were	
					the main routes of exposure.	

Guo, X., Wang, J., Hu, D., Wu, L., Gu, L., Wang, Y., Wu, Y. (2020). <u>Survey of</u> <u>COVID-19 disease among</u> <u>orthopaedic surgeons in</u> <u>Wuhan, People's Republic of</u> <u>China</u> . <i>The Journal of Bone</i> <i>and Joint Surgery, American</i> <i>volume, 102</i> (10), 847-854.	May 20, 2020	Case control	HCW: Orthopaedic surgeons	8 hospitals in Wuhan China Dec 31, 2019 to Feb 24, 2020	 A total of 24 orthopaedic surgeons with COVID-19 were identified from 8 hospitals. 21 cases were lab-confirmed and 3 were clinically diagnosed. The number of cases in each hospital varied from 1 to 8 and the incidence of infection ranged from 1.5% to 20.7%. 5 of 8 hospitals had only 1 case. Epidemiologic investigation determined: Suspected sites of exposure were general wards (79.2%), public places at the hospital (20.8%), operating rooms (12.5%), intensive care units (4.2%) and outpatient clinics (4.2%). Forward transmission was demonstrated in 25% of cases including to colleagues 	High
					(4.2%) and patients (4.2%) in addition to non-hospital contacts.	
Jin, Y.H., Huang, Q., Wang, Y.Y., Zeng, X.T., Luo, L.S., Pan, Z.Y., Wang, X.H. (2020). <u>Perceived infection</u> <u>transmission routes</u> , <u>infection control practices</u> , <u>psychosocial changes, and</u> <u>management of COVID-19</u> <u>infected healthcare workers</u> <u>in a tertiary acute care</u> <u>hospital in Wuhan: A cross- sectional survey</u> . <i>Military</i> <i>Medical Research, 7</i> (24).	May 11, 2020	Cross- sectional	HCW	Hospital in Wuhan China Feb 15 to 29, 2020	 105 HCW were confirmed with COVID-19 infection. Epidemiologic analysis was conducted for 103 of these HCW cases. Relevant findings included: 32 worked in high-risk departments such as respiratory medicine, infectious diseases, emergency, clinical laboratory, anesthesia surgery, operating room, and intensive care unit. 71 cases worked in low-risk departments (other than those listed as high risk). 84.5% were suspected of being infected in the working environment in hospital. 73.6% reported close contact with confirmed patients 17.2% had close contact with suspected cases 41.4% were exposed to confirmed colleague cases 	Moderate

Mandić-Rajčević, S., Masci, F., Crespi, E., Franchetti, S., Longo, A., Bollina, I., Colosio, C. (2020). <u>Contact</u> <u>tracing and isolation of</u> <u>asymptomatic spreaders to</u> <u>successfully control the</u> <u>COVID-19 epidemic among</u> <u>healthcare workers in Milan</u> (<u>Italy</u>). <i>Preprint</i> .	May 8, 2020	Cohort	HCW	2 large hospitals and 40 territorial health care units in Italy Feb 27 to Apr 8, 2020	 185 HCW had positive test results for COVID- 19. 12 of these samples were done at random. The positive rate in non-random samples was around 10% while the rate among randomly sampled HCW was 2.6%. Epidemiologic investigation of 143 HCW cases determined: 49% had close contact with a positive colleague 28% had unknown contact 9.8% had positive household member 7.7% had close contact with positive 	Moderate PREPRINT
Wang, Q., Huang, X., Bai, Y., Wang, X., Wang, H., Hu, X., . Zhao, H. (2020). Epidemiological characteristics of COVID-19 in medical staff members of neurosurgery departments in Hubei province: A multicentre descriptive study. Preprint.	Apr 24, 2020	Cross- sectional	HCW	Neurosurgery departments in 107 hospitals in Hubei province China Jan 8 to Mar 1, 2020	patient 120 HCW in neurosurgery departments of 26 hospitals had been infected with COVID-19. The overall incidence was 2.2%. All 120 HCW had direct contact with COVID-19 patients. 119 did not use standard protective measures at work before infection. Most common mode of transmission was contact with a positive patient (62.5%) or infected colleague (30.8%). No confirmed transmission from medical staff to patients was noted.	High PREPRINT
Studies of contact tracing of ir	patients					
Wake, R. M., Morgan, M., Choi, J., & Winn, S. (2020). <u>Reducing nosocomial</u> <u>transmission of COVID-19:</u> <u>Implementation of a COVID-19 triage system</u> . <i>Clinical</i> <u>Medicine Journal</u> . Epub ahead of print.	Oct 28, 2020	Cohort	Patients	Hospital, London, England Mar 11 and May 12, 2020,	 Inpatients tested positive for COVID-19 more than 7 days after admission were labelled as probable hospital-acquired infections. Analyzing date of symptom onset determined 45 cases were likely acquired in hospital. Of hospital-acquired cases: 40 (88%) shared a ward with a known case, of which 13 (29%) had shared a bay with a known case. 5 (11%) cases may have been acquired from shared facilities or a HCW. 	Moderate

Rickman, H. M., Rampling,	Jun 20,	Cross-	Patients	London	66 COVID-19 in-patients (15%) had infections	Low
T., Shaw, K., Martinez-	2020	sectional	i attorito	teaching	that were determined to be "definitely" (11%)	2011
Garcia, G., Hail, L., Coen, P.,	2020	oootionai		hospital	or "probably" (4%) hospital-acquired.	
Houlihan, C. F. (2020).				noopitai	 36 (55%) had been in the same bay as a 	
Nosocomial transmission of				Mar 2 and	patient with confirmed infection.	
COVID-19: A retrospective				Apr 12, 2020	 9 (14%) had no identified contacts in the 	
study of 66 hospital-acquired				Αρι 12, 2020	same bay but had contacts on the same	
cases in a London teaching					ward.	
hospital. Clinical Infectious					 21 (32%) had no clear source of infection. 	
Diseases. Epub ahead of						
print.					• Among the 36 cases with index case in the	
print.					same bay, 22 (61%) of the index infections	
					were also hospital-acquired with several	
					possible chains of patient-to-patient in-	
					hospital transmission.	
					 14 (39%) were linked to community- 	
					acquired index cases.	
					• 45 (68%) of hospital-acquired cases were	
					not associated with any forward	
					transmission; however, there were several	
					community- and hospital-acquired cases	
					associated with four or more likely	
					secondary infections.	

Studies of HCW and patie	ent contact tr	acing				
Schwierzeck, V., König,	Apr 27,	Cohort	Patients and	Pediatric	7760 inpatients, outpatients and HCW were tested	Moderate
J. C., Kühn, J.,	2020		HCW	dialysis unit in	for COVID-19. Of these, 357 were found to be	
Mellmann, A., Correa-				Germany	positive.	
Martínez, C. L., Omran,						
H., Kampmeier, S.				Feb to Jul	The overall attack rate in the hospital was 1.3%	
(2020). First reported				2020	 0.9% among inpatients 	
nosocomial outbreak of					• 1.6% among HCW	
severe acute respiratory						
syndrome coronavirus 2					In March, an outbreak occurred on the pediatric	
(SARS-CoV-2) in a					dialysis unit. Based on epidemiologic	
pediatric dialysis unit					investigation, 27 cases (23 HCW and 4 patients)	
Clinical Infectious					were identified. These individuals had contact	
<i>Diseases</i> . Epub ahead					with patients or HCW without the use of adequate	
of print.					PPE.	
					The overall attack rate in the outbreak was 25.5%	
					20% among inpatients	
Lucas a New York NA	A	0	Detion to an el	-	• 29.6% among HCW	
Luong-Nguyen, M.,	Apr 23,	Case	Patients and	France	15 patients (4.9%) admitted to digestive surgery	High
Hermand, H., Abdalla,	2020	series	HCW		departments developed hospital-acquired COIVD-	
S., Cabrit, N., Hobeika,				Mar 1 to Apr 5, 2020	19 infection.	
C., Brouquet, A., Sauvanet, A. (2020).				5, 2020	Within 3 surgical services, 7 HCW were diagnosed	
Nosocomial infection					with COVID-19 infection during the same time	
with SARS-CoV-2 within					period.	
departments of						
digestive surgery.					A clear source of infection was not identified,	
Journal of Visceral					though the possibility of community exposure for	
<i>Surgery, 157</i> (3S1), S13-					at least some of the cases exists.	
S18.						
518.						

Question 2: What factors influence the introduction and spread of COVID-19 in acute care settings?

Table 3: Syntheses

Reference	Date Released	Description of Included Studies	Summary of Findings	Quality Rating: Synthesis	Quality Rating: Included Studies
Galanis, P., Vraka, I., Fragkou, D., Bilali, A., & Kaitelidou, D. (2020). <u>Seroprevalence of</u> <u>SARS-CoV-2</u> <u>Antibodies and</u> <u>Associated Factors in</u> <u>Health Care Workers:</u> <u>A Systematic Review</u> <u>and Meta-Analysis.</u> <i>The Journal of</i> <i>Hospital Infection</i> . Epub ahead of print.	Nov 16, 2020 (Search completed Aug 24, 2020)	This systematic review and meta-analysis included 49 studies, with 127,480 HCW to determine seroprevalence of SARS- CoV-2 antibodies and factors associated with seroprevalence. 26 cross-sectional 20 prevalence 3 cohort 27 analyzed risk factors for SARS-CoV-2 antibodies positivity. The majority of studies were from Europe (n=31); the remaining were from North America (n=9), Asia (n=6), and Africa (n=3).	 A number of risk factors associated with seropositivity were explored; no consistent risk factors were identified. Risk factors explored included: Sex: 3 studies found increased risk for males (OR range: 1.39 to 3.21), 23 found no relationship. Ethnicity: 2 studies found increased risk among African American HCW (p<0.05) and other ethnicities vs. white (OR: 2.30, 95% Cl: 1.71, 3.10); 5 found no relationship. Age: 3 studies found conflicting results, with higher risk in those < 30 years (OR: 1.40, 95%Cl 1.22, 1.60); ≥ 40 years old (OR: 1.36, 95%Cl 1.09, 1.60) and ≥ 65 years old (p<0.001); 21 studies found no relationship. Role: 5 studies found relationships, including increased risk with work on COVID-19 unit (3 studies, OR range: 1.4 to 1.67); patient-facing work (3 studies, OR range: 1.22 to 2.9), frontline HCW (OR: 1.38, 95% Cl: 1.22, 1.56); working in the surgery department (OR: 6.47, 95%Cl 2.37, 17.63) or pediatric ICU (OR: 3.77, 95%Cl 1.44, 9.89), or being an assistant (2 studies, OR: 1.39, 95%Cl 1.05, 1.84 and 3.8, 95%Cl 2.3, 6.1); 17 studies found no relationship. Lack of use or access to PPE, 2 studies found increased risk when not using a face covering for all clinical encounters (p=0.012) or working within a PPE shortage (p=0.009); 2 studies found no relationship. 	Moderate	Moderate

Chou, R., Dana, T., Buckley, D. I., Selph, S., Fu, R., & Totten, A. M. (2020). <u>Update</u> <u>Alert 5: Epidemiology</u> <u>of and risk factors for</u> <u>coronavirus infection</u> <u>in health care workers:</u> <u>A living rapid review</u> . <u>Annals of Internal</u> <u>Medicine</u> . Epub ahead of print.	Oct 20, 2020 (Search completed Sep 24, 2020)	The most recent version of this living review includes 34 studies about risk factors for COVID-19.	 Inconsistent findings were reported across studies with respect to difference in risk of COVID-19 between males and females. Some studies report increased risk in nurses vs. physicians, but this is inconsistent. Proper PPE and handwashing, in particular face shields and goggles seem to have the strongest evidence for protection. The authors note that the included studies are limited by methods of measuring exposures, recall bias, no control of confounders, and imprecise estimates. 	Low	Not reported
Calò, F., Russo, A., Camaioni, C., De Pascalis, S., & Coppola, N. (2020). <u>Burden, risk</u> <u>assessment,</u> <u>surveillance and</u> <u>management of SARS- CoV-2 infection in</u> <u>health workers: A</u> <u>scoping review.</u> <i>Infectious diseases of</i> <i>poverty, 9</i> (1), 139.	Oct 7, 2020 (Search completed May 22, 2020)	This scoping review included 43 studies, 14 webpages and 5 ongoing trials assessing risk factors associated with COVID-19 in HCW. 5 of the sources considered adherence to infection control practices or other risk factors; 3 from China, 1 from Singapore and 1 unidentified.	Two studies found no difference in rate of infection with surgical mask or N95 respirators. One study found increased risk with suboptimal adherence to IPAC measures (handwashing before (RR: 3.10, 95% Cl: 1.43–6.73) and after (RR: 2.82, 95% Cl: 1.11–7.18) patient contact; Improper PPE use, RR: 2.82, 95% Cl: 1.11–7.18). One study found increased risk in high risk versus general department (RR: 2.13,95% Cl: 1.45–3.95), and with close direct contact (<1 m) with COVID-19 patients (OR not reported).	Low	Not reported
Gomez-Ochoa, S., Franco, O. H., Rojas, L. Z., Muka, T. (2020). <u>COVID-19 in Health-</u> <u>Care Workers: A Living</u> <u>Systematic Review</u> and Meta-Analysis of <u>Prevalence, Risk</u> <u>Factors, Clinical</u> <u>Characteristics, and</u> <u>Outcomes</u> . American Journal of Epidemiology. Epub ahead of print.	Sep 1, 2020 (Search completed Jul 8, 2020)	 This systematic review and meta-analysis included 97 studies, for a total of 230,398 HCW: 50 prevalence 31 cross-sectional 14 cohort 5 studies reported factors associated with COVID- 19 infection in HCW. The majority were from Wuhan China. 	 Risk factors for COVID-19 infection included: Lack of adherence to IPAC measures including handwashing generally (OR: 2.64, 95%CI 1.04, 6.71), handwashing before patient contact (OR: 3.10, 95%CI 1.43, 6.73), inadequate PPE (OR: 2.82, 95%CI 1.11, 7.18), never using PPE vs. usual PPE use (OR: 3.72, 95%CI 2.12, 6.52). Wearing medical masks vs. N95 respirators (OR: 464.82, 95%CI 97.73, infinite). Having a larger household size was not associated with infection (p = 0.093). 	Low	Low

Table 4: Single Studies

Reference	Date Released	Study Design	Participants	Setting and timing	Summary of findings	Quality Rating:
COVID-19 prevalence stu	udies					
Mortgat, L.,	Oct 6,	Cross-	n=699 HCW	14 hospitals,	Prevalence of COVID-19 with RT-PCR was 1.1%	High
Barbezange, C.,	2020	sectional		Belgium	(95% CI: 0.04, 3.0%) and seroprevalence was	
Fischer, N.,					7.7% (95% 4.7, 12.2%).	PREPRINT
Heyndrickx, L., Hutse,				Apr 22 to 26,		
V., Thomas, I.,				2020	Only exposure to a COVID-19 patient without	
Duysburgh, E. (2020).					following precautions (vs. no contact) was	
SARS-CoV-2					associated with COVID-19 risk (adjusted	
prevalence and					RR=2.11, 95% CI: 1.36-3.28).	
seroprevalence among						
<u>HCW in Belgian</u>					No other demographic or work-related factors	
hospitals: Baseline					were associated with positive serology.	
results of a prospective						
<u>cohort study</u> . Preprint.						
Zheng, C., Hafezi-	Oct 1,	Cross-	n=1045	Hospital,	Frequency of staff testing, and percent positive	Moderate
Bakhtiari, N., Cooper,	2020	sectional	symptomatic	London, UK	are presented, but no statistical comparisons or	
V., Davidson, H.,			hospital staff		denominators are provided	
Habibi, M., Riley, P., &				Mar to Apr	A greater proportion of male staff were	
Breathnach, A. (2020).				2020	tested (13%) and positive (7%) than females	
Characteristics and					(10%, 5% respectively).	
transmission dynamics					A higher proportion of clinical staff (7%)	
of COVID-19 in					tested positive than non-clinical staff (3%).	
healthcare workers at a					Doctors were most likely to test positive	
London teaching					(11%) followed by nurses (7%) and health	
<u>hospital</u> . <i>The Journal</i>					care assistants (6%).	
of Hospital Infection,						
<i>106</i> (2), 325-329.					Emergency (17.3%) and acute medicine, (10.4%)	
					had the highest positivity rates followed by	
					cardiothoracic (9.2%), cardiology (8.9%) renal,	
					oncology and palliative (8.7%) and specialists	
					(8.6%).	

Tubiana, S., Burdet, C., Houhou, N., Thy, M., Manchon, P., Blanquart, F., Duval, X. (2020). <u>High- risk exposure without</u> personal protective equipment and infection with SARS- <u>CoV-2 in healthcare</u> workers: Results of the <u>CoV-CONTACT</u> prospective cohort. <i>Preprint</i> .	Sep 18, 2020	Cohort	n=154 HCW with exposure to patient or colleague with confirmed COVID-19	Hospital, Paris, France Feb to May 2020	 Prevalence of RT-PCR confirmed COVID-19 was 25% (95% CI: 18.4, 32.9). Including possible infections based on symptoms, the prevalence rose to 43.9% (95% CI: 35.9%, 52.3%). Factors associated with infection include: Being a pharmacist or administrative assistant vs. medical staff (adjusted OR=3.8, 95% CI=1.3, 11.2) Exposure to infected patient vs. colleague (adjusted OR=2.6, 95% CI=1.2, 5.9) Authors note 57% of exposures occurred prior to widespread use of masks. 	High PREPRINT
Wang, Y., Wu, W., Cheng, Z., Tan, X., Yang, Z., Zeng, X., Wang, X. (2020). <u>Super-factors</u> <u>associated with</u> <u>transmission of</u> <u>occupational COVID-19</u> <u>infection among</u> <u>healthcare staff in</u> <u>Wuhan, China</u> . <i>The</i> <i>Journal of Hospital</i> <i>Infection, 106</i> (1), 25-34.	Sep 1, 2020	Cross- sectional	n=92 hospital staff with >14 days patient contact	Hospital, Wuhan, China Jan 1 to Feb 29, 2020	 Social Network Analysis was used to identify factors affecting transmission to medical staff. Overall, 33.7% were infected with COVID-19. Odds of infection were higher amongst: Physicians (p = 0.045) Those with medical staff infected in the same department (p<0.001) Those with infected patients in the department (p < 0.001) Those reporting touching their check, nose and mouth during work (p = 0.045) Those who did not wear masks correctly (p = 0.045) Those who attended large parties or crowded places (p = 0.08) Touching the check, nose or mouth during work was the factor most associated with infected participants, identified as a 'super-factor' in the social network analysis. 	Moderate

Garzaro, G., Clari, M., Ciocan, C., Grillo, E., Mansour, I., Godono, A., Pira, E. (2020). <u>COVID-19 infection and</u> diffusion among the healthcare workforce in a large university- hospital in northwest Italy. <i>La Medicina del</i> <i>lavoro, 111</i> (3), 184-194.	Jun 26, 2020	Case report	n=2411 HCW with known COVID-19 contact	4 Hospitals in Northwest Italy Mar 6 to 21, 2020	 HCW with a positive test were more likely to be: Physicians (OR=2.03, 95%CI: 1.18-3.49) vs. nurses Administrative staff (OR=5.77, 95%CI: 1.47-19.55) vs. nurses Providing non-medical services (OR=4.23, 95%CI: 1.99-8.63) vs. inpatient services Working in the maternity hospital (OR=2.94, 95%CI: 1.72-4.95) vs. the general hospital Exposed through a shared working environment (OR=2.63, 95%CI: 1.34-5.32) vs. direct care 	High
Guo, X., Wang, J., Hu, D., Wu, L., Gu, L., Wang, Y., Wu, Y. (2020). <u>Survey of</u> <u>COVID-19 disease</u> <u>among orthopaedic</u> <u>surgeons in Wuhan,</u> <u>People's Republic of</u> <u>China</u> . <i>The Journal of</i> <i>Bone and Joint</i> <i>Surgery, American</i> <i>Version, 102</i> (10), 847- 854.	May 20, 2020	Cross- sectional	n=24 orthopedic surgeons with COVID-19 and 48 matched controls.	8 Hospitals, Wuhan, China Dec 31, 2019 to Feb 24, 2020	 Surgeons with confirmed COVID-19 were more likely to: Report severe fatigue before infection (OR=4.0, 95%Cl: 1.0-16.0) Not wear a N95 respirator (OR=5.20, 95%Cl: 1.09-25.0) Report patients with suspected COVID-19 were not wearing masks (OR=6.05, 95%Cl: 1.70-21.51) The following factors decreased odds of infection: Participation in infection control training (OR=0.12, 95%Cl: 0.03-0.57) Wearing respirators or masks all of the time (OR=0.15, 95%Cl: 0.04-0.55) 	High
Jiaqiang, Z., Mingyang, S., Weijia, Z., Ningtao, L., MingZhang, Z., Lei, Q., & Szu-Yuan, W. (2020). <u>Predictive factors of</u> <u>transmission during</u> <u>endotracheal</u> <u>intubation for</u> <u>coronavirus disease</u> <u>2019 (COVID-19)</u> . <i>Preprint</i> .	Apr 1, 2020	Cross- sectional	n=98 anesthesiologists intubating COVID-19 patients	Hospitals, China Feb 2020	 20/98 were infected (20.41%). Factors influencing risk for infection: Planned intubations were associated with a lower risk (adjusted OR=0.28, 95% CI: 0.14-0.68) Patient cough during intubation was associated with a higher risk (adjusted OR=1.70, 95% CI: 1.39-2.97) 	High PREPRINT

Seroprevalence surveys						
Jones, C. R., Hamilton, F. W., Thompson, A., Morris, T. T., & Moran, E. (2020). <u>Seroprevalence of</u> <u>SARS-CoV-2 IgG in</u> <u>healthcare workers</u> <u>and other staff at</u> <u>North Bristol NHS</u> <u>Trust: A</u> <u>sociodemographic</u> <u>analysis</u> . <i>Preprint</i> .	Nov 16, 2020	Case-control	n=6858 HCW and support staff	Hospital, England Exposure Mar to May 2020, testing in May 2020	 Overall seroprevalence was 9.3%. Factors associated with seropositivity include: Black, Asian and minority ethnic individuals were twice as likely to have antibodies for COVID-19 than white individuals (adjusted OR=1.99, 95% Cl=1.69, 2.34). Critical care and operating room staff were about one third as likely to have antibodies for COVID-19 than staff in other roles (adjusted OR=0.29, 95% Cl=0.13, 0.57 for critical care, adjusted OR=0.29, 95% Cl=0.15, 0.49 for operating room staff). 	High PREPRINT
Baker, J. M., Nelson, K. N., Overton, E., Lopman, B. A., Lash, T. L., Photakis, M., Steinberg, J. P. (2020). <u>Quantification of</u> <u>occupational and</u> <u>community risk factors</u> <u>for SARS-CoV-2</u> <u>seropositivity among</u> <u>healthcare workers in a</u> <u>large U.S. Healthcare</u> <u>system</u> . <i>Preprint</i> .	Nov 3, 2020	Cross- sectional	n=10,275 HCW volunteers	Atlanta, USA Exposure Mar to Jun 2020, testing from Apr to Jun 2020.	 Overall seropositivity was 5.7% (95% Cl: 5.2%,6.1%). Occupational risk factors accounted for 27% (95% Cl: 25%-30%) of risk in multivariable regression models. Risk of infection was associated with: Community contact with a known or suspected case (adjusted OR=1.9, 95% Cl: 1.4, 2.5) Contact with a positive colleague (adjusted OR: 1.2, 95% Cl: 1.0, 1.6) Community incidence (adjusted OR: 1.4, 95% Cl: 1.0,2.0) Being Black (adjusted OR=2.0, 95% Cl: 1.6, 2.4) The authors note that changing in understanding of and adherence to infection control measures in and out of the workplace was not accounted for in analysis. 	High PREPRINT

Erber, J., Kappler, V., Haller, B., Mijočević, H., Galhoz, A., da Costa, C. P., Lingor, P. (2020). <u>Strategies for</u> infection control and prevalence of anti- <u>SARS-CoV-2 lgG in</u> <u>4,554 employees of a</u> <u>university hospital in</u> <u>Munich, Germany</u> . <i>Preprint</i> .	Oct 6, 2020	Cross- sectional	n=4554 hospital employees and medical students	Hospital, Munich, Germany Exposure Mar to May 2020, testing Apr 14 to May 29, 2020	 Overall seroprevalence was 2.4% (95% Cl: 1.9-2.9). Risk factors for seropositivity include: Male sex (OR=1.54, 95% Cl:1.03-2.27) Age 51-60 years (OR=1.75, 95% Cl:1.06-2.85) vs <!--30 years</li--> Diabetes (OR=2.96, 95% Cl:1.01-6.81) Administrative staff without direct patient contact (OR=2.36, 95% Cl:1.19-4.80) Staff with exposure to COVID-19 co-workers (OR=1.74, 95% Cl:1.11-2.65) Staff with exposure to private contacts with COVID-19 (OR=5.56, 95% Cl:3.32-8.94) Unprotected contact with COVID-19 patients (OR=4.77, 95% Cl:3.09-7.22) Protective factors include: Smoking (OR=0.52, 95% Cl:0.26-0.94) Performing aerosol generating procedures (OR=0.50, 95% Cl:0.23-0.94). The authors did not provide any explanation for the surprising protective factors. 	Moderate PREPRINT
Jespersen, S., Mikkelsen, S., Greve, T., Kaspersen, K. A., Tolstrup, M., Boldsen, J. K., Erikstrup, C. (2020). <u>SARS-CoV-2</u> <u>seroprevalence survey</u> <u>among 18,000</u> <u>healthcare and</u> <u>administrative</u> <u>personnel at hospitals,</u> <u>pre-hospital services,</u> <u>and specialist</u> <u>practitioners in the</u> <u>central Denmark</u> <u>region. Clinical</u> <i>Infectious Diseases.</i> Epub ahead of print.	Oct 3, 2020	Cross- sectional	n=17,971 HCW (69% of all in Central Denmark)	7 hospitals, Central Denmark Exposure Mar to Jun 2020, testing May 18 to Jun 19, 2020.	 Adjusted seroprevalence was 3.4% (95% Cl: 2.5%, 3.8%). Younger age, < 30 years vs. all others, was associated with higher seropositivity adjusted OR=1.9, 95% 1.4-2.6) Compared to medical secretaries, nurses (OR: 7.3, 95% Cl: 3.5, 14.9), doctors (OR: 4.0, 95% Cl: 1.8, 8.9) and laboratory staff (OR: 5.0, 95% Cl: 2.1, 11.6) had higher seropositivity Emergency departments had the highest seropositivity (29.7%, vs departments with no or limited COVID-19patient contact (1.8%) 	High

Wilkins, J., Gray, E. L.,	Sep 13, 2020	Cross- sectional	n=6510 HCW	Hospitals, immediate	Weighted seroprevalence was 5.3% (95% Cl:	High
Wallia, A., Hirschhorn, L., Zembower, T., Ho, J., Evans, C. (2020). <u>Seroprevalence and</u> <u>correlates of SARS-</u> <u>CoV-2 antibodies in</u> <u>healthcare workers in</u> <u>Chicago</u> . <i>Preprint</i> .				care centres and outpatient practices in Chicago and suburbs, USA Exposure Mar to Jul 2020, testing Jul 2020	 4.8%, 5.9%). The following demographic groups had higher seropositivity: Younger age (18-29), prevalence 7.4%, vs. older age groups ranging from 2.6 o 4.5% (pvalue and OR not reported) Being Hispanic (9.6%) or non-Hispanic Black (8.5%) vs White (4.3) or Asian (4.6%) (pvalue and OR not reported) Other factors associated with seropositivity include: Known out of hospital exposure (adjusted OR=4.7, 95%CI: 3.5, 6.4) Family member with confirmed case (adjusted OR=26.8, 95%CI: 17.3, 41.8) Nurses (adjusted OR=1.9, 95%CI: 1.3, 2.9) Taking care of COVID-19 patients (adjusted OR=2.19, 95%CI: 1.61, 3.01) Exposure to patients receiving high flow oxygen (OR: 145, no 95% CI) Exposure to patients receiving hemodialysis (OR: 1.57, no 95% CI) 	PREPRINT
Nishida, T., Iwahashi, H., Yamauchi, K., Kinoshita, N., Okauchi, Y., Suzuki, N., Abe, K. (2020). Seroprevalence of SARS-CoV-2 antibodies among 925 staff members in an urban hospital accepting COVID-19 patients in Osaka prefecture, Japan. Preprint.	Sep 11, 2020	Cross- sectional	n=925 HCW	Hospital, Japan Exposure Feb to Jun 2020, testing Jun 2020. Authors note only occasional PPE shortages	Overall seroprevalence was 0.43%, 95% Cl: 0.17, 1.1% (4/925). Those who were seropositive were significantly older (52.8+/- 6.8 vs 40.0+/-11.8, p = 0.03). There was insufficient statistical power to explore other risk factors.	Moderate PREPRINT

Alkurt, G., Murt, A., Aydin, Z., Tatli, O., Agaoglu, N. B., Irvem, A., Doganay, L. (2020). <u>Seroprevalence</u> of coronavirus disease 2019 (COVID-19) among health care workers from three pandemic hospitals of <u>Turkey</u> . <i>Preprint</i> .	Aug 22, 2020	Case-control	n=932 HCW	3 Hospitals, Turkey Exposure Mar to Jun 2020, testing Jun 2020.	Overall seroprevalence was 2.7%. Seroprevalence was higher in non-pandemic clinics (6.4%, p = 0.05). No differences were found between other settings or profession.	Moderate PREPRINT
Morcuende, M., Guglielminotti, J., & Landau, R. (2020). <u>Anesthesiologists' and</u> intensive care providers' exposure to COVID-19 infection in a New York City academic center: A prospective cohort study assessing symptoms and COVID- 19 antibody testing. <i>Anesthesia &</i> <i>Analgesia, 131</i> (3), 669- 676.	Jun 9, 2020	Cross- sectional	n=105 anesthesiologists and intensive care residents and staff	Hospital, New York, USA Exposure Mar 1 to Apr 15, 2020, testing Apr 2020	 Overall seroprevalence was 12.1% (11/91). Seropositive HCW were more likely to: Use the NYC subway (8.18 vs. 41.2%, p = 0.027) Have tested positive previously (p = 0.002) There was a statistical difference in role type, with positive tests more common in staff than residents (p = 0.06). There were no differences between groups for work-related exposure to COVID-19. 	High

Modelling Studies						
Modelling Studies King, M.F., Wilson, A. M., Weir, M. H., Lopez- Garcia, M., Proctor, J., Noakes, C. J. (2020). <u>Modelling the</u> <u>risk of SARS-CoV-2</u> <u>infection through PPE</u> <u>doffing in a hospital</u> <u>environment</u> . <i>Preprint</i> .	Sep 23, 2020	Modelling	N/A	Health care settings, not specified	 This study constructed a Quantitative Microbial Risk Assessments (QMRA) model to predict the number of potential surface exposures and risk of COVID-19 infection for HCW over time. The model considered the following variables: number of patients on a ward, proportion of COVID-19 patients, length of HCW shift, probability of contact with contaminated PPE. The model considered transmission within a health care setting and within the broader community. Interventions occurred in general health care settings by two actors (hospital HCW and patients). Measures included PPE, and periodic testing of patients and HCW. Risk of COVID-19 infection was reported in terms of risk during a single HCW shift. The model found the following rates of risk: Single face-to-face contact: 0.18% Providing intravenous care: 1% 	Not appraised <i>Interpret</i> with caution PREPRINT
					1.6%Mistakes while doffing PPE: <1.0%	

Aug 25,	Modelling	N/A	Wuhan, China	This study constructed an IBM (individual-based	Not
2020	-			model) with a SEIR (susceptible-exposed-	appraised
				infectious-recovered) framework to predict	
				transmission over time and the impact of	Interpret
				different interventions in a tertiary hospital.	with
				Interventions occurred in a ward setting by two	caution
				actors (hospital HCW and patients). Measures	
				included social distancing, self-isolation, tracing	PREPRINT
				and quarantining and PPE.	
				The model was calibrated to empirical data from	
				· · · · · · · · · · · · · · · · · · ·	
				in Wuhan, China.	
				The model found that high-risk pools of HCW	
				•	
				•	
	•		5	5, 5, ,	2020 2020 2020 2020 2020 2020 2020 202

Question 3: What control measures have been successful in acute care settings to prevent primary and secondary cases of COVID-19?

Table 5: Syntheses

Reference	Date Released	Description of Included Studies	Summary of Findings	Quality Rating: Synthesis	Quality Rating: Included Studies
Calò, F., Russo, A., Camaioni, C., De Pascalis, S., & Coppola, N. (2020). <u>Burden, risk assessment,</u> <u>surveillance and</u> <u>management of SARS-</u> <u>CoV-2 infection in health</u> <u>workers: A scoping</u> <u>review</u> . <i>Infectious</i> <i>Diseases of Poverty, 9</i> .	Oct 7, 2020 (Search completed May 22, 2020)	43 studies 5 ongoing trials 14 webpages	Inadequate or non-use of PPE is associated with increased infection risk. Strict infection prevention and control procedures, adequate training programs on the appropriate use of PPE and close monitoring of HCW with symptom surveillance and testing are recommended. In a study of 41 HCW (35 wearing surgical masks, 6 wearing N95 masks) exposed to aerosol generating medical procedures with a COVID-19 patient, no cases of transmission were reported.	Low	Not reported
Sorbello, M., Rosenblatt, W., Hofmeyr, R., Greif, R., & Urdaneta, F. (2020). <u>Aerosol boxes and</u> <u>barrier enclosures for</u> <u>airway management in</u> <u>COVID-19 patients: A</u> <u>scoping review and</u> <u>narrative synthesis</u> . <u>British Journal of</u> <u>Anaesthesia, 125</u> (6), 880- 894.	Sep 3, 2020 (Search completed May 27, 2020)	 52 articles including: 19 correspondences 16 letters to the editor 10 original articles 3 research letters 1 guideline 1 short recommendation 1 case report 1 quality improvement study 6 websites 	Aerosol boxes and other barrier-enclosure systems may reduce large droplet spread, but no evidence that they protect HCW from aerosolised viral particles. Barrier type systems may create additional risk during airway emergencies, are not always ergonomically practical, may be associated with additional infection hazards and may damage or reduce use of PPE.	Moderate	Not reported
			Much of this evidence is based on expert opinion or simulation studies – data with patients is lacking.		

Licina, A., Silvers, A. J., & Stuart, R. (2020). <u>Use of</u> <u>powered air-purifying</u> <u>respirator (PAPR) by</u> <u>healthcare workers for</u> <u>preventing highly</u> <u>infectious viral diseases -</u> <u>a systematic review of</u> <u>evidence</u> . <i>Systematic</i> <i>Reviews, 9</i> (173).	Aug 8, 2020 (Search completed Jun 2020)	 10 studies, of which 2 included COVID-19 and 8 included other viruses (MERS, SARS, Ebola): 1 observational case series (COVID-19) 1 observational cohort study without a control group (COVID-19) 1 simulation RCT 3 observational simulation studies 4 randomized cross over simulation study 	In HCW conducting airway procedures, powered air purifying respirators (PAPRs) were not associated with different rates of COVID-19 infection compared to other protective respiratory equipment.	Moderate	Low
Luqman Arafath, T. K., Jubbal, S. S., Gireesh, E. D., Margapuri, J., Jogu, H. R., Penupolu, S. (2020). <u>Risk of</u> <u>transmission of infection</u> <u>to healthcare workers</u> <u>delivering supportive</u> <u>care for coronavirus</u> <u>pneumonia; a rapid</u> <u>GRADE review. Preprint</u> .	Jul 8, 2020 (Search completed Jun 28, 2020)	 22 studies: 11 mechanistic studies (7 on mannikins, 2 healthy volunteers, 2 others) 11 clinical studies (5 case- control, 6 cohort) 	 This review found across all studies (not specific to COVID-19) risk of transmission is: Lower when a mask is worn Lower when a gown is worn Lower when goggles are worn The certainty of evidence for all the above factors was moderate according to GRADE. 	Low PREPRINT	Not reported
Alberta Health Services. (2020, Jun 12). <u>Topic:</u> <u>Effectiveness of</u> <u>screening programs for</u> <u>reducing the spread of</u> <u>COVID-19 in healthcare</u> <u>settings</u> .	Jun 12, 2020 (Search completed May 22, 2020)	 47 articles that included studies of screening for COVID-19 and other infections (MERS, influenza, TB): 4 modelling studies 3 systematic reviews on travel screening 1 systematic review on TB screening Most studies observational. Evidence related to COVID-19 was only found in grey literature, not primary research literature. 	Evidence does not show that any single form of HCW screening program reduces transmission of infections, although specific studies related to COVID-19 were not identified. There is some preliminary evidence (one modeling study and one observational study) that testing HCW for infection may reduce transmission in acute care settings.	Low	Quality of evidence related to travel screening, TB screening, MERS and H1N1 was relatively robust.

Chu, D.K., Akl, E.A.,	Jun 1, 2020	172 observational studies, no	Absolute risk of infection was greater for	High	Low-to-
Duda, S., Solo, K.,	(Search	RCTs. Includes 44 comparative	shorter distance (<1m) vs longer distance		moderate
Yaacoub, S., &	completed May	studies included in meta-	(1metre or more), this association held for		
Schunemann, H.J. (2020).	3, 2020)	analysis.	COVID-19 specific studies and those in		
Physical distancing, face			health care settings.		
masks, and eye		Includes 7 studies focused on			
protection to prevent		COVID-19 and other studies of	Use of face masks was associated with		
person-to-person		MERS, SARS.	lower risk of infection compared to no		
transmission of SARS-			mask, with a stronger association in health		
CoV-2 and COVID-19: A			care settings. This is possibly due to		
systematic review and			increased use of N95 type respirators in		
<u>meta-analysis</u> . The			health care settings, which are associated		
Lancet, 395(10242), 1973-			with greater infection protection than other		
1987.			mask types.		
			Eye protection was also associated with a		
			lower risk of infection (compared to no eye		
			protection) although this finding was not		
			specific to COVID-19.		
Table 6: Single Studies

Reference	Date Released	Study Design	Population	Setting and Timing	Preventive Measure	Summary of findings	Quality Rating:
Schmitz, D., Vos, M.,	Nov 6,	Cross-	Emergency	Emergency	High-level PPE	A survey of emergency	Moderate
Stolmeijer, R.,	2020	sectional	physicians in	department,		departments between evaluated	
Lameijer, H.,			45	Netherlands		the association between COVID-19	
Schonberger, T.,			emergency			infection and personal protective	
Gaakeer, M. I., Ter			departments,	Mar 1 to May		equipment used.	
Avest, E. (2020).			N not	1, 2020			
Association between			specified			Use of high-level PPE (e.g., FFP2	
personal protective						mask, eye protection) was not	
equipment and SARS-						associated with lower COVID-19	
CoV-2 infection risk in						infections compared to lower-level	
emergency						PPE (e.g., FFP1 or surgical mask).	
<u>department</u>							
healthcare workers.						Contacts among physicians in	
European Journal of						contexts in which PPE was not in	
Emergency Medicine.						use were not controlled for.	
Epub ahead of print.							
Ahmad, J., Anwar, S.,	Nov 5,	Cross-	n=133 nurses	Hospital,	PPE	A survey and serological screen	Moderate
Latif, A., Haq, N. U.,	2020	sectional	and	Peshawar,		for COVID-19 antibodies evaluated	
Sharif, M., & Nauman,			paramedics	Pakistan		the association between COVID-19	
A. A. (2020). <u>The</u>						infection and personal protective	
Association of PPE				Dates not		equipment used.	
Availability, Training				specified			
and Practices with						There was no statistically	
COVID-19 Sero-						significant difference in the	
<u>prevalence in Nurses</u>						seroprevalence of COVID-19	
and Paramedics in						antibodies for staff who had	
Tertiary Care						received PPE immediately at the	
Hospitals of						onset of the pandemic or who did	
<u>Peshawar, Pakistan</u> .						not have interruptions in PPE	
Disaster Medicine and						supply, compared to those with	
Public Health						delays or interruptions.	
Preparedness. Epub							
ahead of print.						Most study participants (58.6%)	
						did not report self-isolating during	
						the pandemic.	

Abella, B. S.,	Sep 30,	Randomized	n=132 HCW	2 Hospitals,	Prophylactic	A double-blind, placebo	Low
Jolkovsky, E. L.,	2020	controlled	(focus on	Philadelphia,	use of hydroxy-	controlled, RCT examined efficacy	LOW
•	2020	trial	those	USA			
Biney, B. T., Uspal, J.		triai		054	chloroquine	of Hydroxychloroquine for	
E., Hyman, M. C.,			working in			prevention of COVID-19	
Frank, I.,			emergency or	Apr 9 to Aug		transmission in HCW.	
Treatment of, CW. H.			COVID-19	4, 2020			
I. (2020). Efficacy and			units)			There was no significant	
safety of						difference in COVID-19 infection	
hydroxychloroquine						rates between those receiving the	
vs placebo for pre-						Hydroxychloroquine (n=4, 6.3%)	
exposure SARS-CoV-2						and those receiving the placebo	
prophylaxis among						(n=4, 6.6%) over the 8-week	
health care workers: A						intervention period.	
randomized clinical							
trial. JAMA Internal						Study was terminated early due to	
Medicine. Epub ahead						futility.	
of print.							
Schwartz, C., Oster,	Sep 1,	Cohort	n=1095 HCW	Hospital,	Compulsory	The hospital revised guidelines for	Moderate
Y., Slama, C.,	2020		exposures to	Jerusalem,	isolation based	compulsory isolation of HCW	
Benenson, S., &			51 index	Israel	on level of	based on close contact with index	
Hadassah, CI. W. G.			cases (n=23		contact and	cases. Most HCW (251/400) were	
(2020). <u>A dynamic</u>			HCW and	Mar 8 to May	timing of	sent into isolation in the first 2	
response to			n=28	23, 2020	symptomology	weeks of the study period.	
exposures of health			patients)		of index case,		
care workers to newly			F · · · · /		PPE	Following this, isolation rules	
diagnosed COVID-19						were changed and masks were	
patients or hospital						made mandatory for all patient	
personnel, in order to						contact. The isolation rate of HCW	
minimize cross-						after this measure was introduced	
transmission and the						dropped from 17.22 per index case	
need for suspension						to 2.79 per index case.	
from work during the							
outbreak. Open						Of the 5 HCW who were	
Forum Infectious						diagnosed with COVID-19, none of	
Diseases, 7(9),						these cases occurred after	
ofaa384.						mandatory masks were introduced	
0100304.						•	
						at 2 weeks.	

Carretta, G., Contessa, C., Boemo, D. G., Bordignon, G., Bennici, S. E., Merigliano, S., Donato, D. (2020). <u>COVID-19 challenge:</u> <u>Proactive</u> <u>management of a</u> <u>tertiary university</u> <u>hospital in Veneto</u> <u>region, Italy</u> . <i>Pathogens and Global</i> <i>Health, 114</i> (6).	Aug 23, 2020	Case report	n=7649 HCW	Hospital, Italy Feb 21 to 1 May, 2020	A number of hospital wide measures, but provision of FFP2/FFP3 respirators, goggles and protective suits as well as isolation protocols and testing via a swab were instituted for workers.	Low prevalence rate of COVID-19 (1.8%) among HCW compared to other regions of Italy was attributed to high staff testing rates, as well as timely and correct use of PPE.	Moderate
Hawkins, E. S., Fertel, B. S., Muir, M. R., Meldon, S. W., Delgado, F. J., & Smalley, C. M. (2020). Adding eye protection to universal masking reduces COVID-19 among frontline emergency clinicians to the level of community spread. American Journal of Emergency Medicine. Epub ahead of print.	Aug 20, 2020	Cohort	n=352 frontline ED clinicians	14 Midwest emergency departments, USA Mar 18 to Jul 18, 2020	Eye protection (goggles), plus universal masking of HCW and patients in ED	 1.14% (n=4) clinicians contracted COVID-19, which was not significantly different from the community prevalence rate of 0.85%. Eye protection and universal masking brings the level of clinician prevalence of COVID-19 down to community levels (rather than ED patient population levels). 	Moderate

Cattelan, A. M., Sasset, L., Di Meco, E., Cocchio, S., Barbaro, F., Cavinato, S., Baldo, V. (2020). <u>An integrated</u> <u>strategy for the</u> <u>prevention of SARS-</u> <u>CoV-2 infection in</u> <u>healthcare workers: A</u> <u>prospective</u> <u>observational study</u> . <i>International Journal</i> <i>of Environmental</i> <i>Research and Public</i> <i>Health</i> .	Aug 10, 2020	Cohort	n=60 HCW	Hospital, Italy Feb 21 to Apr 16, 2020	Advanced triage area, PPE protocols and testing	361 swabs were taken from HCW, with no positive results for COVID- 19 in this setting with triage, PPE and testing in place.	Moderate
Turcato, G., Zaboli, A., & Pfeifer, N. (2020). <u>The COVID-19</u> <u>epidemic and</u> <u>reorganisation of</u> <u>triage, an</u> <u>observational study</u> . <i>Internal and</i> <i>Emergency Medicine</i> . Epub ahead of print.	Aug 9, 2020	Diagnostic	Medical and nursing staff working in emergency department, n not specified	Emergency Department, Italy Mar 4 to Apr 15, 2020	Pre-triage area established in ED and PPE protocols implemented for infected and clean areas.	No medical or nursing staff working in the emergency department showed symptoms of COVID-19 in this setting with pre- triage and PPE in place. Of 63 swabs tested, none were positive.	Low

Zhong, Q., Liu, Y. Y.,	Mar 28,	Cohort	n=44	Hospital,	PPE	49 patients with radiologically	Low
Luo, Q., Zou, Y. F.,	2020		anesthetists	Wuhan China		confirmed COVID-19 (but only 26%	
Jiang, H. X., Li, H.,						RT-PCR confirmed) received spinal	
Zhang, Z. Z. (2020).				Jan 1 to Feb		anesthesia from 44 anesthetists.	
Spinal anaesthesia for				14, 2020		Anesthetists' only contact with	
patients with						presumed COVID-19 patients was	
coronavirus disease						during surgery.	
2019 and possible							
transmission rates in						37 anesthetists wore Level 3 PPE	
anaesthetists:						(positive pressure, full chemical	
Retrospective, single-						protective suit and self-contained	
centre, observational						breathing apparatus) while the	
cohort study. British						other 7 wore Level 1 PPE (gown,	
Journal of						surgical mask, gloves, hat).	
Anaesthesia, 124(6),							
670-675.						1 anesthetist wearing Level 3 PPE	
						contracted COVID-19, 4	
						anesthetists wearing Level 1 PPE	
						contracted COVID-19, suggesting	
						the higher level of PPE reduces	
						risk of transmission (relative risk	
						reduction 95.3% (95% CI: 63.7-	
						99.4%).	
						26 of the anesthetists (23/37	
						wearing PPE Level 3 and 3/7	
						wearing PPE Level 1) were also	
						taking prophylactic antiviral	
						therapy.	
						It is also possible that the infected	
						anesthetists contracted COVID-19	
						through contact with a colleague	
						or another source.	

Huang, Z., Zhao, S.,	Mar 24,	Case report	n=65	Hospital,	The radiology	The radiology department	Moderate
Li, Z., Chen, W., Zhao,	2020	-	diagnostic	Chengdu,	department	screened 7203 people for COVID-	
L., Deng, L., & Song,			radiologists	China	reconfigured	19 and 24 were positive. 3083 of	
B. (2020). <u>The battle</u>			and 161 other	Jan 21 to Mar	areas to reduce	those screened received a CT. No	
against coronavirus			staff	9, 2020	cross-	radiology staff member contracted	
disease 2019 (COVID-			members		contamination.	COVID-19 during this period, with	
19): Emergency					Staff were	PPE and protocols in place in the	
management and					provided with	setting.	
infection control in a					multiple forms		
radiology department.					of PPE, given		
Journal of the					regular breaks,		
American College of					monitored for		
<i>Radiology, 17</i> (6), 710-					symptoms and		
716.					received		
					additional		
					training on		
					infection		
					control.		

Modelling Studies							
Baek, Y. J., Lee, T.,	Oct 26,	Modelling	N/A	Hospital,	Front door	This study constructed a SEIR	Not
Cho, Y., Hyun, J. H.,	2020			South Korea	symptom	(susceptible-exposed-infectious-	appraised
Kim, M. H., Sohn, Y.,					screening,	recovered) mathematical model to	
. Choi, J. Y. (2020). <u>A</u>					quarantine	predict transmission over time and	Interpret
mathematical model of					unit for new	the impact of different interventions	with
COVID-19 transmission					patients, early	in a tertiary hospital. Interventions	caution
in a tertiary hospital					testing of	occurred in three categories (ward,	
and assessment of the					suspected	outpatient clinics, emergency room)	
effects of different					cases, PPE for	and by four actors (doctors, nurses,	
intervention strategies.					staff and	patients, caregivers). Measures	
<i>PLoS One,15</i> (10), e0241169					visitors	included front door screening, triage clinics, access control, universal	
60241103						masking, increasing testing and	
						isolation wards.	
						Effectiveness of simulated	
						interventions was reported in terms	
						of the proportion of decreased cases	
						due to an intervention. The model	
						found the following rates of	
						effectiveness:	
						 All interventions combined: 	
						80.7%	
						 Early testing of suspected cases 	
						with test results <8 hours: 80.7%	
						 Universal masking of HCW and 	
						visitors: 66.4%	
						 Quarantine of newly admitted 	
						patients: 65.7%	
						• Front door screening: 43.1%	

Huang, Q., Mondal, A.,	Aug 25,	Modelling	N/A	Hospital,	Social	This study constructed an IBM	Not
Jiang, X., Horn, M. A.,	2020	wouening		Wuhan,	distancing,	(individual-based model) with a	appraised
-	2020			China	HCW		appraiseu
Fan, F., Fu, P.,				China	-	SEIR (susceptible-exposed-	latenset
Gurarie, D. (2020).					screening, PPE		Interpret
SARS-CoV-2						predict transmission over time and	with
transmission and						the impact of different interventions	caution
control in a hospital						in a tertiary hospital. Interventions	
setting: An individual-						occurred in a ward setting by two	PREPRINT
based modelling						actors (hospital HCW and patients).	
study. Preprint.						Measures included social	
						distancing, self-isolation, tracing	
						and quarantining and PPE.	
						The model was calibrated to	
						empirical data from a hospital	
						department during the early	
						pandemic in Wuhan, China.	
						Effectiveness of simulated	
						interventions was reported in terms	
						of the proportion of decreased cases	
						due to an intervention and decrease	
						in workday loss. The model found	
						the following rates of effectiveness:	
						 High efficacy face masks: 80% 	
						decrease in cases, 87% decrease	
						in workday loss	
						Health care worker screening:	
						only marginal effects on number	
						of cases and workday loss	
						Social distancing: only marginal	
						effects on number of cases and	
						workday loss	
			1			workuay 1055	

Miller, J.C., Qiu, X., MacFadden, D., & Hanage, W.P. (2020). <u>Evaluating the</u> <u>contributions of</u> <u>strategies to prevent</u> <u>SARS-CoV-2</u> <u>transmission in</u> <u>healthcare setting: a</u> <u>modelling study</u> . <i>Preprint</i> .	Jul 14, 2020	Modelling	N/A	Health care settings, not specified	PPE, periodic testing of patients and HCW, cohorting of suspected cases	This study constructed a SEIR (susceptible-exposed-infectious- recovered) model to predict transmission over time and the impact of different interventions in a tertiary hospital. The model considered transmission within a health care setting and within the broader community. Interventions occurred in general health care setting by two actors (hospital HCW and patients). Measures included PPE, and periodic testing of patients and HCW. Effectiveness of simulated interventions was reported in terms of decreased cases of HCW infections due to an intervention. The model found: • PPE use greatly reduces the number of health worker infections • Use of less-effective PPE (improper use or low quality equipment) reduces infection rates in HCW to that of the general population • Weekly testing of patients and HCW significantly reduced COVID-19 infections. • Smaller cohorts of suspected cases reduced nosocomial infections, compared to larger cohorts.	Not appraised <i>Interpret</i> with caution PREPRINT
						infections, compared to larger	

Evans, S., Agnew, E.,	May 20,	Modelling	N/A	Hospital,	Periodic	This study constructed a SEIR	Not
Vynnycky, E., &	2020			United	testing of	(susceptible-exposed-infectious-	appraised
Robotham, J. V. (2020).				Kingdom	HCW, single	recovered) mathematical model to	
The impact of testing					room isolation	predict transmission over time and	Interpret
and infection					vs. cohorting	the impact of different interventions	with
prevention and control					of suspected	in a tertiary hospital. Interventions	caution
strategies on within-					cases	occurred in a ward setting by two	
hospital transmission						actors (hospital HCW and patients).	PREPRINT
dynamics of COVID-19						Measures included periodic testing	
in English hospitals.						of HCW and single room isolation	
Preprint.						vs. cohorting of suspected cases.	
						The model was calibrated to	
						National Health Service data from	
						two hospitals.	
						Effectiveness of simulated	
						interventions was reported in terms	
						of the proportion of decreased cases	
						due to an intervention. The model	
						found the following rates of	
						effectiveness:	
						 Daily testing of HCW: 64% 	
						decrease in cases in HCW	
						 Weekly testing of HCW: 24% 	
						decrease in cases in HCW	
						 Single room isolation of 	
						suspected cases, instead of	
						cohorting of suspected cases:	
						significant reduction in	
						nosocomial cases in patients	

References

Abella, B. S., Jolkovsky, E. L., Biney, B. T., Uspal, J. E., Hyman, M. C., Frank, I., . . . Treatment of, C.-W. H. I. (2020). <u>Efficacy and safety of hydroxychloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers: A randomized clinical trial</u>. *JAMA Internal Medicine*. Epub ahead of print.

Ahmad, J., Anwar, S., Latif, A., Haq, N. U., Sharif, M., & Nauman, A. A. (2020). <u>The Association of PPE Availability, Training and Practices with COVID-19 Sero-prevalence in Nurses and Paramedics in Tertiary Care Hospitals of Peshawar, Pakistan</u>. *Disaster Medicine and Public Health Preparedness*. Epub ahead of print.

Alajmi, J., Jeremijenko, A. M., Abraham, J. C., Alishaq, M., Concepcion, E. G., Butt, A. A., & Abou-Samra, A.-B. (2020). <u>COVID-19 infection among healthcare workers in a national healthcare system: The Qatar experience</u>. *International Journal of Infectious Diseases, 100*, 386-389.

Alberta Health Services. (2020, June 5). <u>Has there been documented transmission of SARS-</u> <u>Cov-2 virus (or similar viruses) through heating, ventilation, and air conditioning (HVAC)</u> <u>systems in hospitals or nonhospital settings?</u>

Alberta Health Services. (2020, June 12). <u>*Topic: Effectiveness of screening programs for reducing the spread of COVID-19 in healthcare settings.*</u>

Alkurt, G., Murt, A., Aydin, Z., Tatli, O., Agaoglu, N. B., Irvem, A., . . . Doganay, L. (2020). <u>Seroprevalence of coronavirus disease 2019 (COVID-19) among health care workers from three pandemic hospitals of Turkey</u>. *Preprint*.

Baek, Y. J., Lee, T., Cho, Y., Hyun, J. H., Kim, M. H., Sohn, Y., . . . Choi, J. Y. (2020). <u>A</u> <u>mathematical model of covid-19 transmission in a tertiary hospital and assessment of the</u> <u>effects of different intervention strategies</u>. *PLoS One, 15(10), e0241169*

Baker, J. M., Nelson, K. N., Overton, E., Lopman, B. A., Lash, T. L., Photakis, M., . . . Steinberg, J. P. (2020). <u>Quantification of occupational and community risk factors for SARS-CoV-2</u> <u>seropositivity among healthcare workers in a large U.S. Healthcare system</u>. *Preprint*.

Baker, M. A., Fiumara, K., Rhee, C., Williams, S. A., Tucker, R., Wickner, P., . . . Klompas, M. (2020). Low risk of covid-19 among patients exposed to infected healthcare workers. *Clinical Infectious Diseases*. Epub ahead of print.

Biernat, M. M., Zinczuk, A., Biernat, P., Bogucka-Fedorczuk, A., Kwiatkowski, J., Kalicinska, E., . . . Wrobel, T. (2020). <u>Nosocomial outbreak of SARS-CoV-2 infection in a haematological unit - high mortality rate in infected patients with haematologic malignancies</u>. *Journal of Clinical Virology*. Epub ahead of print.

Buising, K. L., Williamson, D., Cowie, B. C., MacLachlan, J., Orr, E., Maclsaac, C., . . . Marshall, C. (2020). A hospital-wide response to multiple outbreaks of covid-19 in health care workers: Lessons learned from the field. *The Medical Journal of Australia*. Epub ahead of print.

Calò, F., Russo, A., Camaioni, C., De Pascalis, S., & Coppola, N. (2020). <u>Burden, risk</u> <u>assessment, surveillance and management of SARS-CoV-2 infection in health workers: A</u> <u>scoping review</u>. *Infectious Diseases of Poverty, 9*.

Cao, G., Tang, S., Yang, D., Shi, W., Wang, X., Wang, H., . . . Ma, L. (2020). <u>The Potential</u> <u>transmission of SARS-CoV-2 from patients with negative RT-PCR swab tests to others: two</u> <u>related clusters of COVID-19 outbreak</u>. *Japanese Journal of Infectious Diseases, 73*(6), 399-403.

Carretta, G., Contessa, C., Boemo, D. G., Bordignon, G., Bennici, S. E., Merigliano, S., . . . Donato, D. (2020). <u>COVID-19 challenge: Proactive management of a tertiary university hospital</u> <u>in Veneto region, Italy</u>. *Pathogens and Global Health*, *114*(6).

Cattelan, A. M., Sasset, L., Di Meco, E., Cocchio, S., Barbaro, F., Cavinato, S., . . . Baldo, V. (2020). <u>An integrated strategy for the prevention of SARS-CoV-2 infection in healthcare</u> workers: A prospective observational study. *International Journal of Environmental Research and Public Health*.

Chou, R., Dana, T., Buckley, D. I., Selph, S., Fu, R., & Totten, A. M. (2020). <u>Update Alert 5:</u> <u>Epidemiology of and risk factors for coronavirus infection in health care workers: A living rapid</u> <u>review</u>. *Annals of Internal Medicine*. Epub ahead of print.

Chu, D.K., Akl, E.A., Duda, S., Solo, K., Yaacoub, S., & Schunemann, H.J. (2020). <u>Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis</u>. *The Lancet, 395*(10242), 1973-1987.

Contejean, A., Leporrier, J., Canoui, E., Alby-Laurent, F., Lafont, E., Beaudeau, L., . . . Kerneis, S. (2020). <u>Comparing dynamics and determinants of SARS-CoV-2 transmissions among health</u> <u>care workers of adult and pediatric settings in central Paris</u>. *Clinical Infectious Diseases*. Epub ahead of print.

Erber, J., Kappler, V., Haller, B., Mijočević, H., Galhoz, A., da Costa, C. P., . . . Lingor, P. (2020). <u>Strategies for infection control and prevalence of anti-SARS-CoV-2 IgG in 4,554 employees of a</u> <u>university hospital in Munich, Germany</u>. *Preprint*.

Evans, S., Agnew, E., Vynnycky, E., & Robotham, J. V. (2020). <u>The impact of testing and</u> <u>infection prevention and control strategies on within-hospital transmission dynamics of covid-</u> <u>19 in English hospitals</u>. *Preprint*.

Galanis, P., Vraka, I., Fragkou, D., Bilali, A., & Kaitelidou, D. (2020). <u>Seroprevalence of SARS-CoV-2 Antibodies and Associated Factors in Health Care Workers: A Systematic Review and Meta-Analysis.</u> *The Journal of Hospital Infection*. Epub ahead of print.

Garzaro, G., Clari, M., Ciocan, C., Grillo, E., Mansour, I., Godono, A., . . . Pira, E. (2020). <u>COVID-19 infection and diffusion among the healthcare workforce in a large university-hospital in</u> <u>northwest Italy</u>. *La Medicina del lavoro*, *111*(3), 184-194.

Gomez-Ochoa, S., Franco, O. H., Rojas, L. Z., ... Muka, T. (2020). <u>COVID-19 in Health-Care</u> <u>Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical</u> <u>Characteristics, and Outcomes</u>. *American Journal of Epidemiology*. Epub ahead of print.

Guo, X., Wang, J., Hu, D., Wu, L., Gu, L., Wang, Y., . . . Wu, Y. (2020). <u>Survey of COVID-19</u> <u>disease among orthopaedic surgeons in Wuhan, People's Republic of China</u>. *The Journal of Bone and Joint Surgery, American volume*, *102*(10), 847-854.

Hawkins, E. S., Fertel, B. S., Muir, M. R., Meldon, S. W., Delgado, F. J., & Smalley, C. M. (2020). Adding eye protection to universal masking reduces covid-19 among frontline emergency clinicians to the level of community spread. *American Journal of Emergency Medicine*. Epub ahead of print.

Huang, Q., Mondal, A., Jiang, X., Horn, M. A., Fan, F., Fu, P., . . . Gurarie, D. (2020). <u>SARS-CoV-2</u> transmission and control in a hospital setting: An individual-based modelling study. *Preprint*.

Huang, Z., Zhao, S., Li, Z., Chen, W., Zhao, L., Deng, L., & Song, B. (2020). <u>The battle against</u> coronavirus disease 2019 (COVID-19): <u>Emergency management and infection control in a</u> radiology department. Journal of the American College of Radiology, 17(6), 710-716.

Jespersen, S., Mikkelsen, S., Greve, T., Kaspersen, K. A., Tolstrup, M., Boldsen, J. K., . . . Erikstrup, C. (2020). <u>SARS-CoV-2 seroprevalence survey among 18,000 healthcare and</u> <u>administrative personnel at hospitals, pre-hospital services, and specialist practitioners in the</u> <u>central Denmark region</u>. *Clinical Infectious Diseases*. Epub ahead of print.

Jiaqiang, Z., Mingyang, S., Weijia, Z., Ningtao, L., MingZhang, Z., Lei, Q., & Szu-Yuan, W. (2020). <u>Predictive factors of transmission during endotracheal intubation for coronavirus disease 2019 (COVID-19)</u>. *Preprint*.

Jin, Y.H., Huang, Q., Wang, Y.Y., Zeng, X.T., Luo, L.S., Pan, Z.Y., . . . Wang, X.-H. (2020). <u>Perceived infection transmission routes, infection control practices, psychosocial changes, and</u> <u>management of COVID-19 infected healthcare workers in a tertiary acute care hospital in</u> <u>Wuhan: A cross-sectional survey</u>. *Military Medical Research, 7*(24).

Jones, C. R., Hamilton, F. W., Thompson, A., Morris, T. T., & Moran, E. (2020). <u>Seroprevalence</u> of SARS-CoV-2 IgG in healthcare workers and other staff at North Bristol NHS Trust: A sociodemographic analysis. *Preprint*.

Kim, S. W., Jo, S. J., Lee, H., Oh, J. H., Lim, J., Lee, S. H., . . . Lee, J. (2020). <u>Containment of a healthcare-associated covid-19 outbreak in a university hospital in Seoul, Korea: A single-center experience</u>. *PLoS One*. Epub ahead of print.

King, M.F., Wilson, A. M., Weir, M. H., Lopez-Garcia, M., Proctor, J., . . . Noakes, C. J. (2020). <u>Modelling the risk of SARS-CoV-2 infection through PPE doffing in a hospital environment</u>. *Preprint*.

Knoll, R. L., Klopp, J., Bonewitz, G., Grondahl, B., Hilbert, K., Kohnen, W., . . . Gehring, S. (2020). <u>Containment of a large SARS-CoV-2 outbreak among healthcare workers in a pediatric intensive care unit</u>. *The Pediatric Infectious Disease Journal, 39*(11), e336-e339.

Koh, W. C., Naing, L., Chaw, L., Rosledzana, M. A., Alikhan, M. F., Jamaludin, S. A., . . . Wong, J. (2020). <u>What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors</u>. *PLoS One, 15*(10), e0240205-e0240205.

Lai, X., Wang, M., Qin, C., Tan, L., Ran, L., Chen, D., . . . Wang, W. (2020). <u>Coronavirus disease</u> 2019 (COVID-2019) infection among health care workers and implications for prevention measures in a tertiary hospital in Wuhan, China. *JAMA Network Open, 3*(5), e209666

Licina, A., Silvers, A. J., & Stuart, R. (2020). <u>Use of powered air-purifying respirator(papr) by</u> <u>healthcare workers for preventing highly infectious viral diseases -a systematic review of</u> <u>evidence</u>. *Systematic Reviews, 9*(173).

Luong-Nguyen, M., Hermand, H., Abdalla, S., Cabrit, N., Hobeika, C., Brouquet, A., . . . Sauvanet, A. (2020). <u>Nosocomial infection with SARS-CoV-2 within departments of digestive</u> <u>surgery</u>. *Journal of Visceral Surgery*, *157*(3S1), S13-S18.

Luqman Arafath, T. K., Jubbal, S. S., Gireesh, E. D., Margapuri, J., Jogu, H. R., . . . Penupolu, S. (2020). <u>Risk of transmission of infection to healthcare workers delivering supportive care for coronavirus pneumonia; a rapid GRADE review.</u> *Preprint*.

Mandić-Rajčević, S., Masci, F., Crespi, E., Franchetti, S., Longo, A., Bollina, I., . . . Colosio, C. (2020). <u>Contact tracing and isolation of asymptomatic spreaders to successfully control the</u> <u>COVID-19 epidemic among healthcare workers in Milan (Italy)</u>. *Preprint*.

Miller, J.C., Qiu, X., MacFadden, D., & Hanage, W.P. (2020). <u>Evaluating the contributions of</u> <u>strategies to prevent SARS-CoV-2 transmission in healthcare setting: a modelling study</u>. *Preprint*.

Morcuende, M., Guglielminotti, J., & Landau, R. (2020). <u>Anesthesiologists' and intensive care</u> providers' exposure to covid-19 infection in a new york city academic center: A prospective cohort study assessing symptoms and covid-19 antibody testing. *Anesthesia & Analgesia, 131*(3), 669-676.

Mortgat, L., Barbezange, C., Fischer, N., Heyndrickx, L., Hutse, V., Thomas, I., . . . Duysburgh, E. (2020). <u>SARS-CoV-2 prevalence and seroprevalence among healthcare workers in Belgian</u> <u>hospitals: Baseline results of a prospective cohort study</u>. *Preprint*. Mponponsuo, K., Kerkerian, G., Somayaji, R., Missaghi, B., Vayalumkal, J. V., Larios, O. E., . . . Conly, J. (2020). <u>Lack of nosocomial transmission to exposed inpatients and coworkers in an</u> <u>investigation of five SARS-CoV-2-infected healthcare workers</u>. *Infection Control & Hospital Epidemiology*. Epub ahead of print.

Nasia, S., Gage, K. M., Katarina, M. B., Thomas, C. F., & David, H. O. C. (2020). <u>Determining the</u> source of transmission of SARS-CoV-2 infection in a healthcare worker. *Preprint*.

Nishida, T., Iwahashi, H., Yamauchi, K., Kinoshita, N., Okauchi, Y., Suzuki, N., . . . Abe, K. (2020). <u>Seroprevalence of SARS-CoV-2 antibodies among 925 staff members in an urban hospital accepting COVID-19 patients in Osaka prefecture, Japan</u>. *Preprint*.

Prasitsirikul, W., Pongpirul, K., Pongpirul, W. A., Panitantum, N., Ratnarathon, A. C., & Hemachudha, T. (2020). <u>Nurse infected with COVID-19 from a provisional dengue patient</u>. *Emerging Microbes & Infections, 9*(1).

Rickman, H. M., Rampling, T., Shaw, K., Martinez-Garcia, G., Hail, L., Coen, P., . . . Houlihan, C. F. (2020). <u>Nosocomial transmission of COVID-19: A retrospective study of 66 hospital-acquired</u> <u>cases in a London teaching hospital</u>. *Clinical Infectious Diseases*. Epub ahead of print.

Schmitz, D., Vos, M., Stolmeijer, R., Lameijer, H., Schonberger, T., Gaakeer, M. I., . . . Ter Avest, E. (2020). <u>Association between personal protective equipment and SARS-CoV-2 infection risk in</u> <u>emergency department healthcare workers</u>. *European Journal of Emergency Medicine*. Epub ahead of print.

Schünemann, H., Brożek, J., Guyatt, G., & Oxman, A. (2013). *Handbook for grading the quality* of evidence and the strength of recommendations using the GRADE approach.

Schwartz, C., Oster, Y., Slama, C., Benenson, S., & Hadassah, C.-I. W. G. (2020). <u>A dynamic</u> response to exposures of health care workers to newly diagnosed COVID-19 patients or hospital personnel, in order to minimize cross-transmission and the need for suspension from work during the outbreak. *Open Forum Infectious Diseases*, 7(9), ofaa384.

Schwierzeck, V., König, J. C., Kühn, J., Mellmann, A., Correa-Martínez, C. L., Omran, H., ... Kampmeier, S. (2020). <u>First reported nosocomial outbreak of severe acute respiratory</u> <u>syndrome coronavirus 2 (SARS-CoV-2) in a pediatric dialysis unit. Clinical infectious diseases:</u> <u>an official publication of the Infectious Diseases Society of America</u>. *Clinical Infectious Diseases*. Epub ahead of print.

Sikkema, R. S., Pas, S. D., Nieuwenhuijse, D. F., Toole, Á., Verweij, J., van der Linden, A., . . . Koopmans, M. P. G. (2020). <u>COVID-19 in health-care workers in three hospitals in the south of</u> <u>the Netherlands: A cross-sectional study</u>. *The Lancet Infectious Diseases, 20*(11), 1273-1280.

Sorbello, M., Rosenblatt, W., Hofmeyr, R., Greif, R., & Urdaneta, F. (2020). <u>Aerosol boxes and</u> <u>barrier enclosures for airway management in covid-19 patients: A scoping review and narrative</u> <u>synthesis</u>. *British Journal of Anaesthesia*, *125*(6), 880-894. Tubiana, S., Burdet, C., Houhou, N., Thy, M., Manchon, P., Blanquart, F., . . . Duval, X. (2020). <u>High-risk exposure without personal protective equipment and infection with SARS-CoV-2 in</u> <u>healthcare workers: Results of the CoV-CONTACT prospective cohort</u>. *Preprint*.

Turcato, G., Zaboli, A., & Pfeifer, N. (2020). <u>The COVID-19 epidemic and reorganisation of triage, an observational study</u>. *Internal and Emergency Medicine*. Epub ahead of print.

Wake, R. M., Morgan, M., Choi, J., & Winn, S. (2020). <u>Reducing nosocomial transmission of</u> <u>covid-19: Implementation of a covid-19 triage system</u>. *Clinical Medicine Journal*. Epub ahead of print.

Wang, Q., Huang, X., Bai, Y., Wang, X., Wang, H., Hu, X., . . . Zhao, H. (2020). <u>Epidemiological</u> <u>characteristics of covid-19 in medical staff members of neurosurgery departments in Hubei</u> <u>province: A multicentre descriptive study</u>. *Preprint*.

Wang, Y., Wu, W., Cheng, Z., Tan, X., Yang, Z., Zeng, X., . . . Wang, X. (2020). <u>Super-factors</u> <u>associated with transmission of occupational covid-19 infection among healthcare staff in</u> <u>Wuhan, China</u>. *The Journal of Hospital Infection*, *106*(1), 25-34.

Wee, L. E., Sim, X. Y. J., Conceicao, E. P., Aung, M. K., Goh, J. Q., Yeo, D. W. T., . . . Venkatachalam, I. (2020). <u>Containment of covid-19 cases among healthcare workers: The role of surveillance, early detection, and outbreak management</u>. *Infection Control and Hospital Epidemiology*, 41(7), 765-771.

Wee, L. E. I., Sim, X. Y. J., Conceicao, E. P., Aung, M. K., Tan, K. Y., Ko, K. K. K., . . . Ling, M. L. (2020). <u>Containing covid-19 outside the isolation ward: The impact of an infection control</u> <u>bundle on environmental contamination and transmission in a cohorted general ward</u>. *American Journal of Infection Control*, *48*(9), 1056-1061.

Wilkins, J., Gray, E. L., Wallia, A., Hirschhorn, L., Zembower, T., Ho, J., . . . Evans, C. (2020). <u>Seroprevalence and correlates of SARS-CoV-2 antibodies in healthcare workers in Chicago</u>. *Preprint*.

Zheng, C., Hafezi-Bakhtiari, N., Cooper, V., Davidson, H., Habibi, M., Riley, P., & Breathnach, A. (2020). <u>Characteristics and transmission dynamics of COVID-19 in healthcare workers at a</u> <u>London teaching hospital</u>. *The Journal of Hospital Infection*, *106*(2), 325-329.

Zhong, Q., Liu, Y. Y., Luo, Q., Zou, Y. F., Jiang, H. X., Li, H., . . . Zhang, Z. Z. (2020). <u>Spinal anaesthesia for patients with coronavirus disease 2019 and possible transmission rates in anaesthetists: Retrospective, single-centre, observational cohort study</u>. *British Journal of Anaesthesia*, *124*(6), 670-675.