\bigcirc

National Collaborating Centre for Methods and Tools

Centre de collaboration nationale des méthodes et outils

Rapid Review Update 1: What is known about how long the virus can survive with potential for infection on surfaces found in community settings?

Prepared by: The National Collaborating Centre for Methods and Tools

Date: March 5, 2021

Suggested Citation:

National Collaborating Centre for Methods and Tools. (2021, March 5). *Rapid Review Update 1: What is known about how long the virus can survive with potential for infection on surfaces found in community settings?* <u>https://www.nccmt.ca/knowledge-repositories/covid-19-rapid-evidence-service</u>.

<u>Please Note</u>: An update of this review may be available. Access the most current version of this review by visiting the National Collaborating Centre for Methods and Tools COVID-19 Rapid Evidence Service at the above link.

© 2021. National Collaborating Centre for Methods and Tools, McMaster University. All rights reserved.

The National Collaborating Centre for Methods and Tools (NCCMT) is hosted by McMaster University and funded by the Public Health Agency of Canada. The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada.

This update was completed with contributions by colleagues in the COVID-19 Rapid Evidence Service at Public Health England.

This Rapid Review is for general information purposes only. The information provided in this Rapid Review is provided "as is" and McMaster University makes no warranties, promises and/or representations of any kind, expressed or implied, as to the nature, standard, accuracy, completeness, reliability or otherwise of the information provided in this Rapid Review, nor to the suitability or otherwise of the information to your particular circumstances. McMaster University does not accept any responsibility or liability for the accuracy, content, completeness, legality, reliability or use of the information contained in this Rapid Review.

The authors declare they have no conflicts of interest to report.

Executive Summary

Background

As community transmission of the coronavirus disease 2019 (COVID-19) continues worldwide, it is important to understand the role that indirect transmission via surfaces may play in community settings.

This updated rapid review was produced to support public health decision makers' response to the COVID-19 pandemic. This review seeks to identify, appraise, and summarize emerging research evidence to support evidence-informed decision making.

This rapid review includes evidence available up to December 31, 2020 to answer the question: What is known about how long the virus can survive with potential for infection on surfaces found in community settings?

What Has Changed in This Version?

- Since the last version of this review (July 31, 2020), the body of evidence has grown substantially. To be able to complete this updated rapid review, we have refined the research question to surfaces found in community settings (i.e., not hospital/clinical settings). This has resulted in 18 studies that were included in the original review being excluded in this update. A list of excluded references is available <u>here</u>.
- This update includes four new syntheses, one update to a previously included synthesis, and 22 new single studies.

Key Points

- Across several syntheses and prevalence studies, there is consistent evidence that fragments of SARS-CoV-2 can be detected on surfaces in community settings for up to seven days, the certainty of evidence is considered moderate (GRADE), and it is possible that findings may change as new information becomes available. However, most of these studies measure viral genetic material, so did not distinguish between live virus and dead virus or viral fragments. Only one study measured viable virus (that which has potential to infect) in samples and found none to be present.
- Overall, viral fragments can be detected on surfaces, but these fragments may not be viable, with the certainty of evidence considered low (GRADE) and findings may change as new information becomes available.
- Of the studies that reported whether cleaning of surfaces had occurred prior to sampling, disinfecting / cleaning procedures consistently decreased or eliminated detection of SARS-CoV-2 fragments. The certainty of the evidence is considered moderate (GRADE), and it is possible that findings may change as new information becomes available.

 Findings from laboratory-based studies indicate SARS-CoV-2 can remain viable longer on smoother surfaces such as plastic or steel than cardboard or cotton. However often with starting concentrations much higher than found in the environment. There is wide variation in the length of times reported but there is indication of increased stability at lower temperatures (such as 4°C) and more rapid decay with increasing temperatures. Study quality cannot be assessed with GRADE as this evidence is from laboratory studies only, and the applicability of these findings to real world settings is unknown.

Overview of Evidence and Knowledge Gaps

- Several studies that collected surface samples in community settings have detected fragments of SARS-CoV-2 by real-time RT-PCR in samples from a variety of surfaces, particularly bedrooms, bathrooms and high-touch surfaces such as door handles.
- In agreement with findings from other syntheses, the likelihood of finding fragments of SARS-CoV-2 on surfaces sampled in community settings has varied across studies. It is not possible to determine the extent to which this variability is due to the different methods of sampling used, which affect the chance of detecting virus particles. For example, some studies used random surface sampling, yet most used 'high-touch' surfaces to maximize chance of detection.
- Although virus particles have been detected, the methods used for testing in many of these studies is not as rigorous as the current gold standard test (which requires three RNA targets to be amplified by real-time RT-PCR (Corman et al., 2020), as they have only used one or two RNA targets). Moreno et al. found most positive samples tested positive for only one of the three RNA targets, yet Di Carlo et al. found none of their samples to have at least two positive targets. Most studies do not distinguish between live virus and dead virus or viral fragments.
- Only one prevalence study, by Döhla et al. attempted to detect viable virus (live virus that has retained potential to infect) by viral culture test, and did not detect any, despite finding positive samples by real-time RT-PCR (suggesting these positive samples may not have been viable virus). Therefore, there appears to be low risk of infection from touching a contaminated surface, although the evidence is very limited due to only one study using a viral culture test for live virus.
- Several disinfecting or cleaning procedures were reported to occur after contamination but prior to sampling, and consistently decrease or eliminate real-time RT-PCR positive SARS-CoV-2 samples. Of the eight studies that explicitly stated that surfaces had been cleaned before sample collection, five found only negative samples and three a small number of positive samples. Most studies had varied, or were not explicit on, cleaning practices used, however the presence of a cleaning procedure consistently reduced the detection of viral particles.
- Under controlled laboratory conditions, some using high initial titres, the length of time viable virus was detectable (by viral culture test) on non-porous (hard) surfaces ranged from three to 28 days. On porous surfaces such as cloth, those which tested a range of different time points found that the majority was absorbed soon after application but could remain detectable from three hours to 14 days. Laboratory studies often use starting concentrations that are orders of magnitude higher than those observed in the environment. These starter concentrations will influence survival times, making it difficult to generalize findings from laboratory studies to real world settings.

- Seven laboratory studies investigated the effect of temperature on survival of viable SARS-CoV-2. Temperatures from 4°C to 70°C were tested. Six studies found there to be increased stability at lower temperatures, with faster decay as temperatures increase; one study found the highest stability at 30°C with the virus being most stable at room temperature.
- One study investigated relative humidity on survival of the virus, and found fastest decay at 65% relative humidity, and slower decay at both lower (40%) and higher (85%) relative humidity. However, the applicability of these findings to real world settings is unknown.

Methods

Research Question

What is known about how long the virus can survive with potential for infection on surfaces found in community settings?

Search

On January 4, 2021, the following databases were searched using key terms "indirect transmission", "fomite", "surface", and "touch" with date limits of Dec 31, 2021:

- <u>MEDLINE</u>
- Embase
- Trip Medical Database
- <u>COVID-19 Evidence Alerts</u> from McMaster PLUS™
- Public Health +
- COVID-19 Living Overview of the Evidence (L·OVE)
- <u>McMaster Health Forum</u>
- <u>Prospero Registry of Systematic Reviews</u>
- <u>MedRxiv preprint server</u>
- NCCMT <u>COVID-19 Rapid Evidence Reviews</u>
- NCCDH Equity-informed Responses to COVID-19
- NCCEH Environmental Health Resources for the COVID-19 Pandemic
- NCCID <u>Disease Debrief</u>
- NCCIH <u>Updates on COVID-19</u>
- NCCHPP <u>Public Health Ethics and COVID-19</u>
- Uncover (USHER Network for COVID-19 Evidence Reviews)
- Centers for Disease Control and Prevention's <u>Morbidity and Mortality Weekly Report</u> (<u>MMRW</u>)
- Institute national d'excellence en santé et en services sociaux (INESSS)
- BC Centre for Disease Control (BCCDC)
- Public Health Ontario
- Institut national de santé publique du Québec (INSPQ)
- Alberta Health Service's <u>COVID-19 Resources for AHS Staff & Health Professionals</u>

A copy of the full search strategy is available at this <u>link</u>.

What has changed in the methods for this version?

The body of literature for this topic has expanded significantly since the last version of this review. To complete a timely, focused synthesis of the evidence, the inclusion and exclusion criteria were refined to exclude studies conducted in clinical or hospital settings. Several studies that were previously included in this review have now been excluded; the list of excluded references is available at this <u>link</u>. This review provides a synthesis of evidence for transmission of the virus that causes COVID-19 via surfaces commonly found in community settings.

Study Selection Criteria

The search results were first screened for recent guidelines and syntheses. Single studies were included if no syntheses were available, or if single studies were published after the search was conducted in the included syntheses. English-language, peer-reviewed sources and sources published ahead-of-print before peer review were included. Surveillance sources were excluded. English-language, peer-reviewed sources and sources published ahead-of-print before peer review and sources published ahead-of-print before peer review descurces and sources published ahead-of-print before peer review are included. When available, findings from syntheses and clinical practice guidelines are presented first, as these take into account the available body of evidence and, therefore, can be applied broadly to populations and settings.

	Inclusion Criteria	Exclusion Criteria
Population	Inanimate surfaces	Clinical settings
		Hospital settings
Intervention	SARS-CoV-2 exposure	Exposure through close contact
		with an infected individual
Comparisons	-	Laboratory studies where
		comparisons of different
		disinfection/cleaning products was
		primary objective
Outcomes	Detection of SARS-CoV-2 virus or RNA	
	COVID-19 infection	

Data Extraction and Synthesis

Data relevant to the research question, such as study design, setting, location, population characteristics, interventions or exposure and outcomes were extracted when reported. We synthesized the results narratively due to the variation in methodology and outcomes for the included studies.

Appraisal of Evidence Quality

We evaluated the quality of included evidence using critical appraisal tools as indicated by the study design below. Quality assessment was completed by one reviewer and verified by a second reviewer. Conflicts were resolved through discussion. For some of the included evidence a suitable quality appraisal tool was not found, or the review team did not have the expertise to assess methodological quality. Studies for which quality appraisal has not been conducted are noted within the data tables.

Study Design	Critical Appraisal Tool
Synthesis	Assessing the Methodological Quality of Systematic Reviews (AMSTAR)
	AMSTAR 1 Tool
Prevalence	Joanna Briggs Institute (JBI) <u>Checklist for Prevalence Studies</u>

Completed quality assessments for each included study are available on request.

The Grading of Recommendations, Assessment, Development and Evaluations (<u>GRADE</u>) approach was used to assess the certainty in the findings based on eight key domains.

In the GRADE approach to quality of evidence, **observational studies**, as included in this review, provide **low quality** evidence, and this assessment can be further reduced based on other domains:

- High risk of bias
- Inconsistency in effects
- Indirectness of interventions/outcomes
- Imprecision in effect estimate
- Publication bias

and can be upgraded based on:

- Large effect
- Dose-response relationship
- Accounting for confounding.

The overall certainty in the evidence for each outcome was determined taking into account the characteristics of the available evidence (observational studies, some not peer-reviewed, unaccounted-for potential confounding factors, different tests and testing protocols, lack of valid comparison groups). A judgement of 'overall certainty is very low' means that the findings are very likely to change as more evidence accumulates.

Findings

Summary of Evidence Quality

In this update, four new syntheses, one update to a previously included synthesis, 22 new single studies were identified, and 18 studies were deemed ineligible for a total of 41 publications included in this review. The quality of the evidence included in this review is as follows:

Research Question	Evidence included		Overall certainty in evidence
What is known about how long the virus can survive with potential for infection on surfaces found in community settings?	Completed syntheses In progress syntheses Single studies	7 2 32	Low-moderate

Warning

Given the need to make emerging COVID-19 evidence quickly available, many emerging studies have not been peer reviewed. As such, we advise caution when using and interpreting the evidence included in this rapid review. We have provided a summary of the quality of the evidence as low, moderate or high to support the process of decision making. Where possible, make decisions using the highest quality evidence available.

Important to this question, we did not assess the methodological quality of laboratory-based studies. Due to the technical nature of these studies, we highly recommend consulting a content-area expert to inform decision making.

Table 1: Syntheses

Reference	Date Released	Description of Included Studies	Summary of Findings	Quality Rating: Synthesis	Quality Rating: Included Studies
New evidence reported Mar	ch 5, 2021				
Bedrosian, N., Mitchell, E., Rohm, E., Rothe, M., Kelly, C., String, G., & Lantagne, D. (2020). <u>A systematic review of surface</u> contamination, stability, and disinfection data on <u>SARS-CoV-2 (through July</u> <u>10, 2020)</u> . <i>Environmental</i> <i>Science and Technology</i> . Epub ahead of print.	Nov 23, 2020 (Search completed Jul 10, 2020)	 This review included: 35 studies on surface contamination 16 studies on surface stability 27 studies on surface disinfection 	 Surfaces contamination in the community: 2.5% of household surfaces positive to SARS-CoV-2; 14% in non-household accommodation; and 14% in outdoor settings (including 25% high-touch surfaces and 23% hard furniture). SARS-CoV-2 half-life: 2.3-17.9 hours on stainless steel; 2.3-15.3 hours on plastic; 2.3-15.3 hours on nitrile. Half-life decreases as temperature and humidity increase. A 99.9% virus reduction can be obtained with sunlight, ultraviolet light, ethanol, hydrogen peroxide and hypochlorite. Knowledge gap on the contribution of fomite to 	Low	Not reported
			SARS-CoV-2 transmission.		
Bueckert, M., Gupta, R., Gupta, A., Garg, M., & Mazumder, A. (2020). Infectivity of SARS-CoV-2 and other coronaviruses on dry surfaces: Potential for indirect transmission. <i>Materials, 13</i> (22), 5211.	Nov 18, 2020 (Search date not reported)	This review included 26 studies, of which 15 were related to SARS-CoV-2. Probably all laboratory- based studies, although not clearly stated	Overall, porous substrates seem to inactivate SARS-CoV-2 faster than non-porous material (with some exceptions, such as N-95 and surgical masks on which SARS-CoV-2 appear to be remarkably stable). Correlation between material wettability and SARS-CoV-2 stability. Cotton and cellulose-based materials usually	Low	Not reported
			attenuate SARS-CoV-2 quicker than other materials (besides copper). SARS-CoV-2 persistence inversely related to temperature and humidity, and sunlight might inactivate the virus.		

Fernández-Raga, M., Diaz- Marugan, L., Garcia Escolano, M., Bort, C., & Fanjul, V. (2020). <u>SARS-</u> <u>CoV-2 viability under</u> <u>different meteorological</u> <u>conditions, surfaces, fluids</u> <u>and transmission between</u> <u>animals</u> . <i>Environmental</i> <i>Research, 192</i> , 110293.	Oct 2, 2020 (Search completed Jun 29, 2020)	Approximately 6 studies were included related to SARS-CoV-2, although this is not clear	SARS-CoV-2 can stay for a variable period on different surfaces (from hours to days) maintaining its infective potential. However, touching a contaminated surface is only infective if contact with the surface ends up in mucosal membranes.	Low	Not reported
Meyerowitz, E. A., Richterman, A., Gandhi, R. T., & Sax, P. E. (2020). <u>Transmission of SARS-</u> <u>CoV-2: A review of viral,</u> <u>host, and environmental</u> <u>factors</u> . <i>Annals of Internal</i> <i>Medicine, 174</i> (1), 69-79.	Sep 17, 2020 (Search completed Sep 7, 2020)	 This review included: 1 laboratory-based study 18 studies sampling contaminated environmental surfaces 	There is no conclusive evidence for fomite or direct contact transmission of SARS-CoV-2 in humans, as reports suggesting fomite transmission are circumstantial (e.g., infected persons reporting no direct contact with a case, suggesting transmission via shared common facilities). Authors suspect the levels of viral RNA or live virus remaining on surfaces are unlikely to cause infection.	Low	Not reported
Usher Institute. (2020, Aug 15). <u>Summary: What is the</u> <u>evidence for indoor</u> <u>transmission of SARS-</u> <u>CoV-2?</u>	Aug 15, 2020 (Search completed May 21, 2020)	This review included 66 studies (to answer a range of questions). Number of studies relating to surfaces or types of study not reported	Laboratory-based studies suggest the virus may persist longer on smooth surfaces, such as plastic or stainless steel (up to 72 or 48 hours, respectively), than cardboard (up to 24 hours); and at low temperatures (highly stable at 4°C, not at 70°C) and damp conditions. Although viral RNA was detected on a range of objects in clinical and non-clinical settings, 3 studies which quantified the amount of virus present found minimal amounts. One epidemiological study reported fomite transmission, through occupying the same seat as the index case in a church.	Low <i>NOT PEER</i> <i>REVIEWED</i>	Low

Previously reported evidenc	e				
Fiorillo, L., Cervino, G., Matarese, M., D'Amico, C., Surace, G., Paduano, V., Cicciù, M. (2020). <u>COVID-</u> <u>19 Surface Persistence: A</u> <u>Recent Data Summary and</u> <u>Its Importance for Medical</u> <u>and Dental Settings</u> . <i>International Journal of</i> <i>Environmental Research</i> <i>and Public Health</i> , <i>17</i> (9), 3132.	Apr 30, 2020 (Search date not reported)	This review included 4 laboratory-based studies, only one focused on SARS-CoV-2 (also included above).	SARS-CoV-2 persisted longest on plastic and stainless steel. The virus was not detectable after 4 hours on copper and 24 hours on cardboard. These findings are consistent with other coronaviruses.	Moderate	Not reported
National Academies of Sciences, Engineering, and Medicine. (2020, Mar 27). <u>Rapid expert consultation</u> <u>update on SARS-CoV-2</u> <u>surface stability and</u> <u>incubation for the COVID-</u> <u>19 pandemic</u> .	Mar 27, 2020 (Search date not reported)	 This review included: Experimental laboratory-based studies Prevalence studies 	 Two lab-based studies were described, as well as preliminary results from in-progress studies via personal communication. SARS-CoV-2 showed greater stability on smooth surfaces (glass, banknote, stainless steel, plastic); no infectious virus was detected after 4-7 days. Also, infectious virus was detectable on the outer layer of a surgical mask after 7 days. Across prevalence studies, there were variable rates of surface samples testing positive for SARS-CoV-2 primarily using reverse transcriptase-polymerase chain reaction (RT-PCR) for testing. Samples across studies were collected both prior to and after cleaning/ disinfection, from different sites (personal rooms, common areas) and across different settings (hospitals, cruise ship). 	Low NOT PEER REVIEWED	Not reported

Table 2: In-progress Syntheses

Title	Anticipated Release Date	Setting	Description of Document
Previously reported evidence			
Dalla Nora, V., Azevedo, N. & Rosa, D. (2020). <u>Survival of SARS-CoV-2 on different surfaces of</u> <u>the dental office and the effective disinfection</u> <u>agents</u> . PROSPERO, CRD42020188152.	Oct 15, 2020	Dental office	This systematic review aims to explore the survival time of SARS-CoV-2 on different surfaces in dental offices and determine decontamination agents and concentration levels for effective disinfection.
Deliga Schroder, A. G., Guariza Filho, O., Neto, J. S., Gonçalves, F. M., Bittencourt Basso, I., Sampaio Santos, R., Nogueira Cortz Ravazzi, G. M. (2020). <u>COVID-19 survival time on</u> <u>inanimate surfaces: a systematic review</u> . PROSPERO, CRD42020185643.	Jun 30, 2020	Multiple	This systematic review aims to explore survival time of SARS- CoV-2 on different types of inanimate surfaces.

Table 3: Single Studies

Reference	Date Released	Study Design	Setting	Method of testing and timing	Summary of findings	Quality Rating:
Prevalence Studies						
New evidence reported	March 5, 2	021				
Ming, Z., Han, S., Deng, K., Ha, Y., Kim, S., Reyes, E., Samadpour, M. (2020). <u>Environmental</u> <u>monitoring shows</u> <u>SARS-CoV-2</u> <u>contamination of</u> <u>surfaces in food</u> <u>plants</u> . <i>Preprint.</i>	Dec 11, 2020	Prevalence	Surface samples collected from 116 food production facilities. USA	RT-PCR Samples were collected by plant personnel in different areas and on different surface types between Mar 17 and Sep 3, 2020. 5 facilities followed longitudinally for timeline data analyses in function of preventive measures (but no details provided on these measures).	 278/22,643 (1.23%) of samples tested positive for SARS-CoV-2, and 62/116 (53%) of facilities had at least 1 positive sample. Virus commonly found on frequently touched surfaces such as doorknobs/handles, tables, computer devices and sanitizer dispensers. Receiving rooms and entrance had the highest occurrence of positive samples. 	Low <i>PREPRINT</i>
				No information on cleaning protocols provided.	In 3/5 facilities, decreasing trend of daily positive rate observed.	

Manana T. Dinté D	Dec	Ducualance	Cumbran and aim	RT-PCR	20/02 wars resitive for CARC	Madayata
Moreno, T., Pintó, R.	Dec 9, 2020	Prevalence	Surface and air	RI-PCR	30/82 were positive for SARS- CoV-2.	Moderate
M., Bosch, A., Moreno,	2020		samples collected from buses and	75 samples from buses and 24	COV-2.	
N., Alastuey, A., Minguillón, M. C.,			subway trains.	from trains samples collected	Train:	
Querol, X. (2021).			Subway trains.	between May and Jul 2020 (78	6/15 surface samples positive	
Tracing surface and			Spain	surface samples, 12 air	2/6 air samples positive	
airborne SARS-CoV-2			Spain	samples, 9 samples from air-	0/3 filters samples positive	
RNA inside public				conditioning filters).	0/3 inters samples positive	
buses and subway				conditioning inters).	Bus:	
trains. Environment				Bus samples were collected	13/30 surface samples positive; 3	
International, 147,				before and other after cleaning	of these 13 surfaces were still	
106326. Epub ahead of				(bleach or ozone); train	positive after cleaning	
print.				samples were collected at the	1/6 air samples positive	
print.				end of the day.	3/6 filters samples positive	
				end of the day.	5/0 mers samples positive	
				82 of the 99 samples were	Most of the positive samples	
				analysed.	(24/30) tested positive for only 1	
					of the 3 RNA targets; risk of	
					infections considered to be	
					extremely low.	
Maestre, J. P., Jarma,	Dec 2,	Prevalence	Surface and dust	RT-PCR	11/24 (46%) of surface samples	Moderate
D., Yu, C., Siegel, J.,	2020		samples collected		were positive for SARS-CoV-2,	
Horner, S., & Kinney,			from a household	22 surface samples collected	mostly from the bedroom,	PREPRINT
K. A. (2020).			with 2 confirmed	by household member using a	surface of HVAC filter, and living	
Distribution of SARS-			COVID-19 cases 1	sampling kit provided by the	room.	
CoV-2 RNA signal in a			month after	research team.		
home with COVID-19			symptom	Dust samples collected from	Samples from surfaces regularly	
positive occupants.			resolution (2	bedroom and HVAC filter using	cleaned (e.g., vinyl floor of	
Preprint.			months after	a handheld vacuum cleaner.	kitchen and bathroom, kitchen	
			symptom onset)		counter and dinner table) were	
			,	Information on cleaning	mostly negative.	
			USA	practices and surface material		
				obtained by remote survey.	Virus concentration in dust	
					samples from the carpet floor in	
					the bedroom were a least 1	
					order of magnitude higher than	
					in dust samples from the HVAC	
					filter.	

Akter, S., Roy, P. C., Ferdaus, A., Ibnat, H., Rubayet UI Alam, A. S. M., Nigar, S., Anwar Hossain, M. (2020). <u>Prevalence and stability of SARS CoV- 2 RNA on Bangladeshi</u> <u>banknotes</u> . <i>Preprint</i> .	Nov 30, 2020	Prevalence	Prevalence and stability of SARS- CoV-2 on banknotes in circulation. Bangladesh	RT-PCR Prevalence: 425 banknotes collected from 56 entities (shops, restaurants, drivers, etc.) over a period of 3 months in 2 Southern districts of Bangladesh. Stability: banknotes spiked with SARS-CoV-2 (234 samples).	 31/425 (7.3%) of banknotes were positive for SARS-CoV-2. The entity with the highest prevalence of positive banknote was a local transport business (14.3%). Stability: N gene detected for up to 72 hours at 35°C. Survival higher on new banknotes compared to older banknotes. New banknotes: more fibrous and compact texture, and more absorbent 	High <i>PREPRINT</i>
Liu, P., Yang, M., Zhao, X., Guo, Y., Wang, L., Zhang, J., Wu, G. (2020). <u>Cold-</u> <u>chain transportation in</u> <u>the frozen food</u> <u>industry may have</u> <u>caused a recurrence of</u> <u>COVID-19 cases in</u> <u>destination:</u> <u>Successful isolation of</u> <u>SARS-CoV-2 virus</u> <u>from the imported</u> <u>frozen cod package</u> <u>surface</u> . <i>Biosafety and</i> <i>Health, 2</i> (4), 199–201.	Nov 19, 2020	Prevalence	Surface samples collected from frozen cod outer packaging, as part of an outbreak investigation of 2 positive COVID-19 cases in workers loading/unloading frozen cod. China	Detection method not specified. 421 samples collected. Cleaning of surfaces unlikely prior to sample collection, although not explicitly stated.	than old ones. 50/421 (12%) of samples tested positive for SARS-CoV-2.	Low

Di Carlo, P., Chiacchiaretta, P., Sinjari, B., Aruffo, E., Stuppia, L., De Laurenzi, V., Ucciferri, C. (2020). <u>Air</u> <u>and surface</u> <u>measurements of</u> <u>SARS-CoV-2 inside a</u> <u>bus during normal</u> <u>operation</u> . <i>PLoS ONE</i> , <i>15</i> (11), e0235943. Epub ahead of print.	Nov 5, 2020	Prevalence	Surface and air samples collected from buses. Italy	RT-PCR Samples were collected during the last week of lockdown and the first week after lockdown (May 2020). Air samples were collected every weekday for the length of the bus shift (6.5 hours) and surface samples were collected from 5 commonly touched surfaces (ticket machine and stop buttons) before and after the shift. Cleaning and sanitation	None of the samples (surface and air) tested positive.	High
				performed daily.		
Harvey, A. P., Fuhrmeister, E. R., Cantrell, M., Pitol, A. K., Swarthout, J. M., Powers, J. E., Pickering, A. J. (2020). Longitudinal monitoring of SARS- CoV-2 RNA on high- touch surfaces in a community setting. <i>Preprint.</i>	Nov 1, 2020	Prevalence	Surface samples from high-touch non-porous surfaces such as handles were collected from community settings. USA	RT-PCR 348 samples were collected from 33 unique surfaces (trash can, liquor store, bank, metro door, grocery store, crosswalk buttons, gas station/pump, restaurant, convenience store and post box), throughout a COVID-19 outbreak (Mar 13- Jun 23, 2020). Cleaning frequency/method at sampling locations were not monitored.	29/348 (8.3%) of surface samples were positive for SARS-CoV-2, with 17/33 (52%) of surfaces being positive at least once. The surfaces most frequently contaminated were a trash can handle and a liquor store door handle. The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000)	High <i>PREPRINT</i>

Hu, X., Ni, W., Wang,	Oct 12,	Prevalence	Hotel	RT-PCR	Overall, 14 of 41 (34.1%) samples	Low
Z., Ma, G., Pan, B.,	2020				tested positive.	
Dong, L., Jiang, F.			3 rooms of	Surface samples (light switch,		
(2020). <u>The</u>			quarantined	bathroom door knob, toilet,	46% and 62% of samples from	
distribution of SARS-			overseas students	sink, sewer inlet, floor near	the symptomatic student's	
CoV-2 contamination			returned from	bed, bedside table, bedding,	rooms tested positive, whereas	
on the environmental			America who had	TV and remote control,	no samples from the pre-	
surfaces during			tested positive for	telephone and bay window)	symptomatic student tested	
incubation period of			COVID-19 (2	from within each room were	positive.	
covid-19 patients.			symptomatic and	collected within 4 hours of the		
Ecotoxicology and			1 pre-	students testing positive for	All positive samples were from	
environmental safety,			symptomatic)	COVID-19.	bathroom and bedroom sites	
208, 111438.					(none from living room). The %	
			China	No disinfectant was used	of positive samples across	
				during the hotel quarantine.	different surfaces were cotton	
					60%, ceramic 40%, metal 40%,	
					wood 33% and plastic 16.7%.	
Luo, L., Liu, D., Zhang,	Oct 9,	Prevalence	Surface samples	RT-PCR	One or more positive surface	Low
H., Li, Z., Zhen, R.,	2020		from sites in		sample was identified for 9 of	
Zhang, X., Mao, C.			which persons	Samples were taken from high	the 39 positive cases. Most were	
(2020). <u>Air and surface</u>			with confirmed	touch surfaces and toilets	within the home or hotel room,	
contamination in non-			COVID-19 (9	within 3 days of a positive test.	particularly within the bathroom	
health care settings			asymptomatic		(most positive samples being	
<u>among 641</u>			and 30		from the floor drain and toilet	
environmental			symptomatic		bowl). No positive samples were	
specimens of 39			COVID-19 cases)		found in public areas.	
COVID-19 cases. PLoS			resided or visited			
Neglected Tropical			(home or hotel)			
<i>Diseases</i> , 14(10),						
e0008570.			China			

Parker, C. W., Singh, N., Tighe, S., Blachowicz, A., Wood, J. M., Seuylemezian, A., Venkateswaran, K. (2020). <u>End-to-end</u> <u>protocol for the</u> <u>detection of SARS-</u> <u>CoV-2 from built</u> <u>environments</u> . <i>mSystems, 5</i> (5), e00771-20.	Oct 6, 2020	Prevalence	Not explicitly stated but from the authors contributions it may be buildings at the NASA Jet Propulsion Laboratory, California Institute of Technology. USA	RT-PCR Environmental samples were collected from 7 different materials found across 10 buildings, in areas with large amounts of pedestrian traffic and deemed high-touch surfaces (stainless steel, Amerstat, plastic, copper, and painted surfaces). Implemented safety practices in the buildings included cleaning, social distancing and mask use.	None of the 368 samples collected tested positive for SARS-CoV-2.	Low
Fernández-de-Mera, I. G., Rodriguez Del-Rio, F. J., de la Fuente, J., Perez-Sancho, M., Hervas, D., Moreno, I., Gortazar, C. (2020). Detection of environmental SARS- CoV-2 RNA in a high prevalence setting in Spain. Transboundary and Emerging Diseases. Epub ahead of print.	Sep 7, 2020	Prevalence	Surface samples from public service sites in a rural village with ageing population. Household samples (clothing and surfaces) of active and recovered COVID- 19 symptomatic cases.	RT-PCR Samples were collected after case numbers had dropped to only 3 active cases in the village at first sampling and none at second sampling (16 days later). Hand and household disinfection were encouraged. Hypochlorite disinfection of public spaces occurred 1-3 times weekly prior/during sampling.	 2 of the 6 public service sites surfaces tested positive, the petrol station and the pharmacy. Clothing in both active case households and a surface from 1 of the 6 recovered households tested positive. During repeat sampling clothing from 1 of 7 recovered households tested positive. 	Moderate

Piana, A., Colucci, M.	Aug 25,	Prevalence	Public buildings	RT-PCR	25 samples from within public	Moderate
E., Valeriani, F.,	2021		(office, fast food		buildings (toilets, church pews,	
Marcolongo, A.,			outlet, church),	Surface samples were	floors, wall tiles, phone,	PREPRINT
Sotgiu, G.,			outdoor surfaces	collected after the epidemic	computer keyboards, air	
Pasquarella, C.,			(handles,	peak.	circulation system) and 16	
Romano Spica, V.			handrails,		outdoor samples (handrail,	
(2021). Monitoring			playgrounds) and	No information on cleaning	shared scooter grip, bus stop	
COVID-19			used	protocols of public surfaces.	bench, coffee dispenser button,	
transmission risks by			handkerchiefs.		door handle, playground).	
RT-PCR tracing of						
droplets in hospital			Italy		No SARS-CoV-2 RNA was	
and living					detectable on any surface	
environments.					sample, although presence of	
Preprint.					biological fluids were detected.	
Mouchtouri, V. A.,	Aug 13,	Prevalence	International ferry	RT-PCR	5 of 9 surface swabs from the	Moderate
Koureas, M., Kyritsi,	2020		boat and nursing		ferry boat tested positive (hand	
M., Vontas, A., ros,			home after a	Surface samples were	contact points such as flour	
Kourentis, L.,			COVID-19	collected once an outbreak	scoop handle, doorknob, bar	
Hadjichristodoulou, C.			outbreak had	was identified and before	counter and light switch).	
(2020). Environmental			been identified.	application of cleaning and		
contamination of				disinfection measures.	4 of 20 surface swabs from the	
SARS-CoV-2 on			Greece		nursing home tested positive	
surfaces, air-					(such as patient bed side rail).	
conditioner and					(,-	
ventilation systems.						
International Journal						
of Hygiene and						
Environmental Health,						
230, 113599.						
Xie, C., Zhao, H., Li, K.,	Aug 5,	Prevalence	1 residential	RT-PCR	1 of 24 samples tested positive	Low
Zhang, Z., Lu, X.,	2020	Trevalence	building where 2		(door handle of first infected	2000
Peng, H., Lu, J.	2020		family clusters of	21 surface samples from the	family residence) and none of 10	
(2020). <u>The evidence</u>			confirmed COVID-	elevator and houses of 2	samples tested positive during	
of indirect			19 cases resided.	families.	first and second sampling	
transmission of SARS-					respectively.	
CoV-2 reported in			China	Before sampling the interior of		
<u>Guangzhou, China</u> .			Gillia	the elevator had been	It was believed transmission	
BMC Public Health,				disinfected several times.	occurred from one family to	
<i>20</i> (1), 1202-1202.					another via a contaminated	
					elevator button (13 days prior to	
					surface testing).	

Jiang, F. C., Jiang, X. L., Wang, Z. G., Meng, Z. H., Shao, S. F., Anderson, B. D., & Ma, M. J. (2020). <u>Detection</u> of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. <i>Emerging</i> <i>Infectious Diseases</i> , <i>26</i> (9), 2162–2164.	May 18, 2020	Prevalence	Hotel Surface samples collected from 2 rooms in which 2 pre-symptomatic patients had stayed for < 24 hours. China	RT-PCR 11 samples collected on the same surfaces in each room on Mar 20 and 22, 2020. Cleaning of surfaces prior to sample collection unlikely, although not explicitly stated.	 8/22 (36%) of samples were positive for SARS-CoV-2 (55% in 1 room, 18% in the other room). Pillow cover was the only sample positive in both rooms. Duvet cover, sheet, towel, bathroom door handle and light switch were positive in 1 room; faucet was positive in the other room. The other samples (including door handle, toilets and TV remotes) were negative in both rooms. 	High
Wong, J.C.C., Hapuarachichi, H.C., Arivalan, S., Tien, W.P., Koo, C., Mailepessov, D., Ng, L.C. (2020). Environmental contamination of SARS-CoV-2 in a non- healthcare setting. International Journal of Environmental Research & Public Health, 18(1), 117.	Dec 26, 2020	Prevalence	Sites in which persons with confirmed COVID- 19 resided or visited. Singapore	RT-PCR Samples collected before and after disinfection of high touch areas (rooms, toilets, elevators) 1-3 days after occupancy. Cleaning and disinfection conducted by professional cleaning companies using various agents.	Two of 428 (0.5%) samples tested positive originating from a bedside wall and bed handle prior to disinfection. Following disinfection and cleaning, repeated collected samples tested negative.	Moderate

Abrahão, J. S.,	Oct 1,	Prevalence	Public places	RT-PCR	16 of 101 (16.8%) samples tested	High
Sacchetto, L.,	2020	Trevalence	(near hospital and		positive.	riigii
Rezende, I. M.,	2020		public	No information on cleaning	positive.	
			•		Desitive sevenles were found on	
Rodrigues, R. A. L.,			transportation	protocols of public surfaces.	Positive samples were found on	
Crispim, A. P. C.,			areas) in region		metal and concrete surfaces at	
Moura, C.,			with highest		hospital bus stations (bench,	
Drumond, B. P. (2020).			number of		ground), hospital sidewalks, bus	
Detection of SARS-			reported COVID-		terminals (handrails), and public	
CoV-2 RNA on public			19 cases.		square seating (table and	
surfaces in a densely					benches).	
populated urban area			Brazil			
of brazil: A potential						
tool for monitoring the						
circulation of infected						
patients. The Science						
of the Total						
Environment, 142645.						
Epub ahead of print.						
Marshall, D., Bois, F.,	Aug 30,	Prevalence	Workplace	RT-PCR	Number or percent of positive	Moderate
Jensen, S. K. S., Linde,	2020		•		samples not reported.	
S. A., Higby, R., Remy-			9 office and	Samples were collected near		
McCort, Y., Martin,			mixed-used	end of work shifts and prior to	Workplaces with positive	
G.G. (2020). <u>Sentinel</u>			industrial	disinfection and cleaning.	samples were more likely to	
<u>coronavirus</u>			locations.	alonnootion and oroannig.	have employees with confirmed	
environmental					cases of COVID-19.	
monitoring can			Europe			
contribute to detecting			USA		Highest positive sample rates	
asymptomatic SARS-			007		were found among door handles	
CoV-2 virus spreaders					and shared furniture (break	
and can verify					room chairs, workbenches).	
effectiveness of						
workplace COVID-19						
<u>controls</u> . <i>Microbial</i>						
Risk Analysis. Epub						
ahead of print.						

Yamagishi, T., Ohnishi, M., Matsunaga, N., Kakimoto, K., Kamiya, H., Okamoto, K., Wakita, T. (2020). Environmental sampling for severe acute respiratory syndrome coronavirus 2 during COVID-19 outbreak in the Diamond Princess cruise ship. The Journal of Infectious Diseases, 222(7), 1098- 1102. Döhla, M., Wilbring,	Jul 21, 2020 Jun 2,	Prevalence	Cruise ship Surface samples from vacant cabins of those with confirmed COVID-19 cases, cabins with no confirmed cases, and common areas. Households	Reverse transcription polymerase chain reaction (RT- PCR) used to detect presence of SARS-CoV-2 RNA. Samples collected 7-9 days after disinfection with 5% hydrogen peroxide.	No viable virus was detected in any of the samples. 58 of 601 (10%) samples tested positive from cabins with confirmed COVID-19 cases 1-17 days after the cabins were vacated, but not from non-case- cabins. The virus was most often detected on the bathroom floor near the toilet and bed pillows. 4 of 119 (3.36%) samples tested	High
G., Schulte, B., Kümmerer, B.M., Diegmann, C., Sib, E., Schmithausen, R.M. (2020). <u>SARS-CoV-2 in</u> <u>environmental</u> <u>samples of</u> <u>quarantined</u> <u>households</u> . <i>Preprint</i> .	2020		under quarantine with at least one confirmed COVID- 19 case. Germany	Viral culture test Surface samples collected from frequently shared objects (e.g., door handles, remote control).	positive. Positive samples tested positive. Positive samples were found on electronic devices, knobs/handles, and furniture. Viral culturing detected no viable virus from the samples.	PREPRINT
Bloise, I., Gómez- Arroyo, B., & García- Rodríguez, J. (2020). Detection of SARS- CoV-2 on high-touch surfaces in a clinical microbiology laboratory. <i>The</i> <i>Journal of Hospital</i> <i>Infection, 105</i> (4), 784- 786.	May 15, 2020	Prevalence	Clinical microbiology laboratory with high density of samples tested for COVID-19. Samples from high touch surfaces. Spain	RT-PCR Cleaning and disinfection protocols not reported.	4 of 22 (18%) samples tested positive. Positive samples were found on commonly used objects, such as keyboards, telephones and computer mouse, representing potential sources of infection for laboratory personnel.	Moderate

Lee, S.E., Lee, D.Y., Lee, W.G., Kang, B., Jang, Y.S., Ryu, B., Lee, E. (2020). Detection of novel coronavirus on the surface of environmental materials contaminated by <u>COVID-19 patients in</u> the Republic of Korea. <i>Osong Public Health</i> and Research Perspectives, 11(3), 128–132.	May 8, 2020	Prevalence	A rehabilitation centre and an apartment building complex with COVID-19 outbreaks. Korea	RT-PCR Samples collected from high touch surfaces (e.g. door handles).	2 of 12 (16.7%) samples from communal facilities where disinfection and cleaning had not been conducted prior to collection tested positive. Both samples were from a door handle of a COVID-19 positive patient's room.	Moderate
Laboratory Studies				•	•	
New evidence reported		1	1	1	·	1
Morris, D., Yinda, K.	Nov 13,	Laboratory	SARS-CoV-2	Viral culture test	Viral decay was faster with	Not
C., Gamble, A.,	2020		suspension		increasing temperature with	appraised
Rossine, F. W., Huang,			deposited onto		decay at 27°C 5-10 X faster than	
Q., Bushmaker, T.,			polypropylene		decay at 10°C.	PREPRINT
Lloyd-Smith, J.O.			plastic surface at			
(2020). <u>Mechanistic</u>			different		Virus decay was fastest at 65%	
theory predicts the			temperatures and		relative humidity and tended to	
effects of temperature			humidities.		be slower at lower (40%) or	
and humidity on					higher (85%) relative humidities.	
inactivation of SARS-			USA			
CoV-2 and other						
enveloped viruses.						
Preprint.						

Harbourt, D. E.,	Nov 9,	Laboratory	Evaluated surface	Viral culture test	SARS-CoV-2 remained stable in	Not
Haddow, A. D., Piper,	2020		stability of SARS-		swine skin for the full	appraised
A. E., Bloomfield, H.,			CoV-2 on swine		experiment of 14 days at 4°C; 96	
Kearney, B. J.,			skin, banknotes		hours at 22°C and up to 8 hours	
Fetterer, D.,			and scrub fabric		at 37°C.	
Minogue, T. (2020).			at different			
Modeling the stability			temperatures.		At 4°C, SARS-CoV-2 remained	
of severe acute					quantifiable on bank notes and	
respiratory syndrome			USA		clothing for up to 96 hours.	
coronavirus 2 (SARS-					0	
CoV-2) on skin,					At 22°C, SARS-CoV-2 decay was	
currency, and					quicker, being negative after 24	
clothing. PLoS					hours on bank notes and 8 hours	
Neglected Tropical					on clothing.	
<i>Diseases, 14</i> (11),					C C	
e0008831. Epub ahead					At 37°C SARS-CoV-2 was not	
of print.					detected after 4 hours on	
					clothing and 8 hours on bank	
					notes.	
Magurano, F.,	Nov 5,	Laboratory	SARS-CoV-2	Viral culture test	At 20-25°C, virus infectivity on a	Not
Baggieri, M., Marchi,	2020		suspension		plastic surface reduced rapidly in	appraised
A., Rezza, G., &			deposited onto		the first 24-36 hours. At 28°C,	
Nicoletti, L. (2020).			polypropylene		same reduction was observed in	
SARS-CoV-2 infection:			plastic at different		the first 8-12 hours.	
the environmental			temperatures and			
endurance of the virus			harvested at		At both 20-25°C and at 28°C,	
can be influenced by			different		SARS-CoV-2 maintain its ability	
the increase of			predefined time-		to infect cells on a plastic surface	
temperature. Clinical			points (up to 7		for up to 84 hours but was not	
Microbiology and			days) at a relative		detectable at 96 hours.	
Infection. Epub ahead			humidity of 35-			
of print.			45%.			
			Italy			

Riddell, S., Goldie, S.,	Oct 7,	Laboratory	SARS-CoV-2	Viral culture test	Infectious virus was still	Not
Hill, A., Eagles, D., &	2020		suspension dried		detectable after 28 days at 20°C,	appraised
Drew, T.W. (2020). <u>The</u>			onto glass,		for all non-porous surfaces	
effect of temperature			stainless steel,		tested. For porous (cloth) no	
on persistence of			paper and		infectious virus was detected	
SARS-CoV-2 on			polymer bank		past day 14, with the majority	
<u>common surfaces</u> .			notes, vinyl, cloth		absorbed soon after application.	
Virology Journal (17),			in the dark for up			
145.			to 28 days at		At 30°C infectious virus was	
			20°C, 30°C and		detectable for 7 days for most	
			40°C and 50%		non-porous surfaces and 3 days	
			humidity.		for cloth.	
			Australia		At 40°C infectious virus was not	
					recovered past 48 hours for non-	
					porous and 24 hours for cloth.	
Matson, M.J., Yinda,	Jun 8,	Laboratory	SARS-CoV-2	Viral culture test and RT-PCR	In surface nasal mucus, half-life	Not
C.K., Seifert, S.N.,	2020		mixed with		of SARS-CoV-2 was shorter at	appraised
Bushmaker, T.,			commercially		27°C/85%RH than 21°C/40%RH	
Fischer, R.J., van			available nasal		(p=0.002) and 4°C/40%RH	
Doremalen, N.,			mucus and		(p=0.0007). Half-life was shorter	
Munster, J.J. (2020).			sputum and		on the surface compared to in	
Effect of			deposited on		liquid nasal mucus (p=0.01).	
environmental conditions on SARS-			polypropylene discs at different		In surface sputum, half-life of	
CoV-2 stability in			temperatures and		SARS-CoV-2 was shorter at	
human nasal mucus			humidities.		27°C/85%RH (p=0.0002) and	
and sputum.			numunes.		21°C/40%RH (p=0.0002) and 21°C/40%RH (p=0.004) compared	
Emerging Infectious			USA		with 4°C/40%RH, with no	
<i>Diseases, 26</i> (9), 2276-			034		difference in half-life between	
2278.					liquid and surface sputum.	
2270.						
					Infectious virus persisted in both	
					nasal mucus and sputum on	
					surfaces for ~24 hours and	
					SARS-CoV-2 RNA remained	
					detectable for ≥7 days in all	
					surface samples.	

Kratze, A., Steiner, S., Todt, D., V'kovski, P., Brueggemann, Y., Steinmann, J Pfaender, S. (2020). <u>Temperature-</u> <u>dependent surface</u> <u>stability of SARS-CoV-</u> <u>2</u> . <i>Journal of Infection</i> <i>81</i> (3), 452-482.	Jun 2, 2020	Laboratory	SARS-CoV-2 suspensions dried onto metal discs at 4°C, RT and 30°C for up to 9 days at 30-40% humidity. Germany	Viral culture test	Drying reduced infectivity of virus by 100-fold, but then remained stable for 4-8 hours. Beyond 8 hours there was a stable, slow decline of viral titres at all temperatures over several days. Detectable infectious virus was still present after 180 hours. The median half-life is predicted to be 9.1 hours at RT, 12.9 hours at 4°C, and 17.9 hours at 30°. Surface stability may be due to constant humidity.	Not appraised
Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H L., Chan, M. C. W., Poon, L. L. M. (2020). Stability of SARS-CoV- 2 in different environmental conditions. <i>The</i> <i>Lancet</i> . Microbe, 1(1), e10. Epub ahead of print.	Apr 2, 2020	Laboratory	SARS-CoV-2 added to a surface (printing and tissue paper, treated wood, cloth, glass, banknote, stainless steel, plastic, surgical mask) at different temperatures and pHs and added to various disinfectants for up to 14 days. China	Viral culture test	After 3 hours, no infectious virus could be recovered from printing and tissue paper, after 2 days on treated wood and cloth, 4 days on glass and banknote or 7 days on stainless steel or plastic. A detectable level of infectious virus was present on the outer layer of a surgical mask on day 7. SARS-CoV-2 is extremely stable in a wide range of pH values at room temperature. It is highly stable at 4°C, but at 70°C the time for virus inactivation was reduced to 5 mins. Except for hand soap, no infectious virus could be detected after a 5-minute incubation at room temperature.	Not appraised

Previously reported evid	lence					
Previously reported evic Liu, Y., Li, T., Deng, Y., Liu, S., Zhang, D., Li, H., Li, J. (2020). Stability of SARS-CoV- 2 on environmental surfaces and in human excreta. The Journal of Hospital Infection. Epub ahead of print.	Oct 30, 2020	Laboratory	Steel, plastic, glass, ceramics, paper, cotton, wood, latex gloves, surgical mask deposited and left for 7 days. China	Viral culture test	The virus remained stable and viable for seven days on surfaces of plastic, stainless steel, glass, ceramics, wood, latex gloves and surgical mask. The virus did not remain infectious after 4 days on cotton clothes and after 5 days on paper. In both of these materials, rapid loss of virus infectivity was observed within 1 hour after incubation. Across most of the tested conditions, in the initial phase of viral decay, loss of infectivity was rapid, whereas in the terminal phase, viral infectivity decreased	Not appraised
Pelisser, M., Thompson, J., Majra, D., Youhanna, S., Stebbing, J., & Davies, P. (2020). <u>Sports balls</u> <u>as potential SARS- CoV-2 transmission</u> <u>vectors</u> . <i>Public Health</i> <i>in Practice 1</i> , 100029. Epub ahead of print.	Jul 10, 2020	Laboratory	Sports equipment with inactivated virus pipetted directly onto the surface in a lab UK	Testing protocol not reported	slowly.Surfaces of sports balls weretested before and afterdisinfection, and after use on agrass field. All samples testednegative.The authors note a limitation tothe study may have been themethod used to transfer the virusto surfaces using polyesterswabs which may not have beeneffective.	Not appraised

Pastorino, B., Touret,	Jun 24,	Laboratory	SARS-CoV-2	Viral culture test	SARS-CoV-2 demonstrated viral	Not
F., Gilles, M., de	2020		deposited on		stability for 96 hours on all tested	appraised
Lamballerie, X., &			polystyrene		surfaces.	
Charrel, R.N. (2020).			plastic,			
Prolonged infectivity			aluminum, and		Protein mediums increased	
of SARS-CoV-2 in			glass for 96		SARS-CoV-2 infectivity,	
fomites. Emerging			hours		suggesting that protein-rich	
Infectious Diseases.					mediums such as airway	
26(9), 2256-2257.			France		secretions can protect the	
					expelled virus, potentially	
					enhancing persistence and	
					transmission via contaminated	
					surfaces.	

References

Abrahão, J. S., Sacchetto, L., Rezende, I. M., Rodrigues, R. A. L., Crispim, A. P. C., Moura, C., ... Drumond, B. P. (2020). <u>Detection of SARS-CoV-2 RNA on public surfaces in a densely</u> <u>populated urban area of brazil: A potential tool for monitoring the circulation of infected</u> <u>patients</u>. *The Science of the Total Environment*, 142645. Epub ahead of print.

Akter, S., Roy, P. C., Ferdaus, A., Ibnat, H., Rubayet UI Alam, A. S. M., Nigar, S., ... Anwar Hossain, M. (2020). <u>Prevalence and stability of SARS CoV-2 RNA on Bangladeshi banknotes</u>. *Preprint.*

Bedrosian, N., Mitchell, E., Rohm, E., Rothe, M., Kelly, C., String, G., & Lantagne, D. (2020). <u>A</u> <u>systematic review of surface contamination, stability, and disinfection data on SARS-CoV-2</u> (through July 10, 2020). *Environmental Science and Technology*. Epub ahead of print.

Bloise, I., Gómez-Arroyo, B., & García-Rodríguez, J. (2020). <u>Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory</u>. *The Journal of Hospital Infection*, *105*(4), 784-786.

Bueckert, M., Gupta, R., Gupta, A., Garg, M., & Mazumder, A. (2020). <u>Infectivity of SARS-CoV-2</u> and other coronaviruses on dry surfaces: Potential for indirect transmission. *Materials, 13*(22), 5211.

Chin, A. W. H., Chu, J. T. S., Perera, M. R. A., Hui, K. P. Y., Yen, H.-L., Chan, M. C. W., . . . Poon, L. L. M. (2020). <u>Stability of SARS-CoV-2 in different environmental conditions</u>. *The Lancet*. Microbe, 1(1), e10. Epub ahead of print.

Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., ... Drosten, C. (2020). <u>Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR</u>. *Eurosurveillance, 25*(3), 2000045.

Dalla Nora, V., Azevedo, N. & Rosa, D. (2020). *Survival of SARS-CoV-2 on different surfaces of the dental office and the effective disinfection agents. PROSPERO, CRD42020188152.*

Deliga Schroder, A. G., Guariza Filho, O., Neto, J. S., Gonçalves, F. M., Bittencourt Basso, I., Sampaio Santos, R., ... Nogueira Cortz Ravazzi, G. M. (2020). <u>*COVID-19 survival time on inanimate surfaces: a systematic review. PROSPERO, CRD42020185643.*</u>

Di Carlo, P., Chiacchiaretta, P., Sinjari, B., Aruffo, E., Stuppia, L., De Laurenzi, V., … Ucciferri, C. (2020). <u>Air and surface measurements of SARS-CoV-2 inside a bus during normal operation</u>. *PLoS ONE*, *15*(11), e0235943. Epub ahead of print.

Döhla, M., Wilbring, G., Schulte, B., Kümmerer, B.M., Diegmann, C., Sib, E., ... Schmithausen, R.M. (2020). <u>SARS-CoV-2 in environmental samples of quarantined households</u>. *Preprint.*

Fernández-de-Mera, I. G., Rodriguez Del-Rio, F. J., de la Fuente, J., Perez-Sancho, M., Hervas, D., Moreno, I., ... Gortazar, C. (2020). <u>Detection of environmental SARS-CoV-2 RNA in a high</u> <u>prevalence setting in Spain</u>. *Transboundary and Emerging Diseases*. Epub ahead of print.

Fernández-Raga, M., Diaz-Marugan, L., Garcia Escolano, M., Bort, C., & Fanjul, V. (2020). <u>SARS-CoV-2 viability under different meteorological conditions, surfaces, fluids and transmission</u> <u>between animals</u>. *Environmental Research, 192*, 110293.

Fiorillo, L., Cervino, G., Matarese, M., D'Amico, C., Surace, G., Paduano, V., ... Cicciù, M. (2020). <u>COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and</u> <u>Dental Settings</u>. *International Journal of Environmental Research and Public Health*, *17*(9), 3132.

Harbourt, D. E., Haddow, A. D., Piper, A. E., Bloomfield, H., Kearney, B. J., Fetterer, D., ... Minogue, T. (2020). <u>Modeling the stability of severe acute respiratory syndrome coronavirus 2</u> (SARS-CoV-2) on skin, currency, and clothing. *PLoS Neglected Tropical Diseases, 14*(11), e0008831. Epub ahead of print.

Harvey, A. P., Fuhrmeister, E. R., Cantrell, M., Pitol, A. K., Swarthout, J. M., Powers, J. E., ... Pickering, A. J. (2020). <u>Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in</u> <u>a community setting</u>. *Preprint.*

Hu, X., Ni, W., Wang, Z., Ma, G., Pan, B., Dong, L., ... Jiang, F. (2020). <u>The distribution of SARS-CoV-2 contamination on the environmental surfaces during incubation period of covid-19</u> <u>patients</u>. *Ecotoxicology and environmental safety*, 208, 111438.

Jiang, F. C., Jiang, X. L., Wang, Z. G., Meng, Z. H., Shao, S. F., Anderson, B. D., & Ma, M. J. (2020). <u>Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms</u>. *Emerging Infectious Diseases*, *26*(9), 2162–2164.

Kratze, A., Steiner, S., Todt, D., V'kovski, P., Brueggemann, Y., Steinmann, J. ... Pfaender, S. (2020). <u>Temperature-dependent surface stability of SARS-CoV-2</u>. *Journal of Infection 81*(3), 452-482.

Lee, S.E., Lee, D.Y., Lee, W.G., Kang, B., Jang, Y.S., Ryu, B., ... Lee, E. (2020). <u>Detection of novel</u> <u>coronavirus on the surface of environmental materials contaminated by COVID-19 patients in</u> <u>the Republic of Korea</u>. *Osong Public Health and Research Perspectives*, *11*(3), 128–132.

Liu, P., Yang, M., Zhao, X., Guo, Y., Wang, L., Zhang, J., ... Wu, G. (2020). <u>Cold-chain</u> <u>transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in</u> <u>destination: Successful isolation of SARS-CoV-2 virus from the imported frozen cod package</u> <u>surface</u>. *Biosafety and Health*, *2*(4), 199–201.

Liu, Y., Li, T., Deng, Y., Liu, S., Zhang, D., Li, H., ... Li, J. (2020). <u>Stability of SARS-CoV-2 on</u> <u>environmental surfaces and in human excreta</u>. *The Journal of Hospital Infection*. Epub ahead of print. Luo, L., Liu, D., Zhang, H., Li, Z., Zhen, R., Zhang, X., ... Mao, C. (2020). <u>Air and surface</u> <u>contamination in non-health care settings among 641 environmental specimens of 39 COVID-</u> <u>19 cases</u>. *PLoS Neglected Tropical Diseases*, 14(10), e0008570.

Maestre, J. P., Jarma, D., Yu, C., Siegel, J., Horner, S., & Kinney, K. A. (2020). <u>Distribution of</u> <u>SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants</u>. *Preprint.*

Magurano, F., Baggieri, M., Marchi, A., Rezza, G., & Nicoletti, L. (2020). <u>SARS-CoV-2 infection:</u> <u>the environmental endurance of the virus can be influenced by the increase of temperature</u>. *Clinical Microbiology and Infection.* Epub ahead of print.

Marshall, D., Bois, F., Jensen, S. K. S., Linde, S. A., Higby, R., Remy-McCort, Y., ... Martin, G.G. (2020). <u>Sentinel coronavirus environmental monitoring can contribute to detecting</u> asymptomatic SARS-CoV-2 virus spreaders and can verify effectiveness of workplace COVID-19 controls. *Microbial Risk Analysis*. Epub ahead of print.

Matson, M.J., Yinda, C.K., Seifert, S.N., Bushmaker, T., Fischer, R.J., van Doremalen, N., ... Munster, J.J. (2020). <u>Effect of environmental conditions on SARS-CoV-2 stability in human</u> <u>nasal mucus and sputum</u>. *Emerging Infectious Diseases, 26*(9), 2276-2278.

Meyerowitz, E. A., Richterman, A., Gandhi, R. T., & Sax, P. E. (2020). <u>Transmission of SARS-</u> <u>CoV-2: A review of viral, host, and environmental factors</u>. *Annals of Internal Medicine, 174*(1), 69-79.

Ming, Z., Han, S., Deng, K., Ha, Y., Kim, S., Reyes, E., ... Samadpour, M. (2020). <u>Environmental</u> <u>monitoring shows SARS-CoV-2 contamination of surfaces in food plants</u>. *Preprint.*

Moreno, T., Pintó, R. M., Bosch, A., Moreno, N., Alastuey, A., Minguillón, M. C., ... Querol, X. (2021). <u>Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains</u>. *Environment International, 147*, 106326. Epub ahead of print.

Morris, D., Yinda, K. C., Gamble, A., Rossine, F. W., Huang, Q., Bushmaker, T., ... Lloyd-Smith, J.O. (2020). <u>Mechanistic theory predicts the effects of temperature and humidity on</u> <u>inactivation of SARS-CoV-2 and other enveloped viruses</u>. *Preprint*.

Mouchtouri, V. A., Koureas, M., Kyritsi, M., Vontas, A., ros, Kourentis, L., … Hadjichristodoulou, C. (2020). <u>Environmental contamination of SARS-CoV-2 on surfaces, air-conditioner and</u> <u>ventilation systems</u>. *International Journal of Hygiene and Environmental Health*, 230, 113599.

National Academies of Sciences, Engineering, and Medicine. (2020, Mar 27). <u>Rapid expert</u> <u>consultation update on SARS-CoV-2 surface stability and incubation for the COVID-19</u> <u>pandemic</u>.

Parker, C. W., Singh, N., Tighe, S., Blachowicz, A., Wood, J. M., Seuylemezian, A., ... Venkateswaran, K. (2020). <u>End-to-end protocol for the detection of SARS-CoV-2 from built</u> <u>environments</u>. *mSystems*, *5*(5), e00771-20. Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X., & Charrel, R.N. (2020). <u>Prolonged</u> <u>infectivity of SARS-CoV-2 in fomites</u>. *Emerging Infectious Diseases*. 26(9), 2256-2257.

Pelisser, M., Thompson, J., Majra, D., Youhanna, S., Stebbing, J., & Davies, P. (2020). <u>Sports</u> balls as potential SARS-CoV-2 transmission vectors. *Public Health in Practice 1*, 100029. Epub ahead of print.

Piana, A., Colucci, M. E., Valeriani, F., Marcolongo, A., Sotgiu, G., Pasquarella, C., ... Romano Spica, V. (2021). <u>Monitoring COVID-19 transmission risks by RT-PCR tracing of droplets in hospital and living environments</u>. *Preprint.*

Riddell, S., Goldie, S., Hill, A., Eagles, D., & Drew, T.W. (2020). <u>The effect of temperature on</u> <u>persistence of SARS-CoV-2 on common surfaces</u>. *Virology Journal (17)*, 145.

Shünemann, H., Brożek, J., Guyatt, G., & Oxman, A. (2013). <u>Handbook for grading the quality</u> of evidence and the strength of recommendations using the GRADE approach.

Usher Institute. (2020, Aug 15). <u>Summary: What is the evidence for indoor transmission of</u> <u>SARS-CoV-2?</u>

Wong, J.C.C., Hapuarachichi, H.C., Arivalan, S., Tien, W.P., Koo, C., Mailepessov, D., ... Ng, L.C. (2020). <u>Environmental contamination of SARS-CoV-2 in a non-healthcare setting</u>. *International Journal of Environmental Research & Public Health, 18*(1), 117.

Xie, C., Zhao, H., Li, K., Zhang, Z., Lu, X., Peng, H., ... Lu, J. (2020). <u>The evidence of indirect</u> <u>transmission of SARS-CoV-2 reported in Guangzhou, China</u>. *BMC Public Health*, *20*(1), 1202-1202.

Yamagishi, T., Ohnishi, M., Matsunaga, N., Kakimoto, K., Kamiya, H., Okamoto, K., ... Wakita, T. (2020). <u>Environmental sampling for severe acute respiratory syndrome coronavirus 2 during</u> <u>COVID-19 outbreak in the Diamond Princess cruise ship</u>. *The Journal of Infectious Diseases*, *222*(7), 1098-1102.