

National Collaborating Centre for Methods and Tools

Rapid Review: What is known about how long the virus can survive with potential for infection on surfaces?

Prepared by: The National Collaborating Centre for Methods and Tools

Date: July 31, 2020

Suggested Citation:

National Collaborating Centre for Methods and Tools. (2020). *What is known about how long the virus can survive with potential for infection on surfaces?* <u>https://www.nccmt.ca/knowledge-repositories/covid-19-rapid-evidence-service</u>.

© 2020. National Collaborating Centre for Methods and Tools, McMaster University. All rights reserved.

The National Collaborating Centre for Methods and Tools (NCCMT) is hosted by McMaster University and funded by the Public Health Agency of Canada. The views expressed herein do not necessarily represent the views of the Public Health Agency of Canada.

This Rapid Review is for general information purposes only. The information provided in this Rapid Review is provided "as is" and McMaster University makes no warranties, promises and/or representations of any kind, expressed or implied, as to the nature, standard, accuracy, completeness, reliability or otherwise of the information provided in this Rapid Review, nor to the suitability or otherwise of the information to your particular circumstances. McMaster University does not accept any responsibility or liability for the accuracy, content, completeness, legality, reliability or use of the information contained in this Rapid Review.

Executive Summary

Background

As businesses continue to reopen across the country, it is important to understand the role that indirect transmission via surfaces may play in community settings.

This rapid review was produced to support public health decision makers' response to the coronavirus disease 2019 (COVID-19) pandemic. This review seeks to identify, appraise, and summarize emerging research evidence to support evidence-informed decision making.

This rapid review includes evidence available up to July 27, 2020 to answer the question: What is known about how long the virus can survive with potential for infection on surfaces?

Key Points

- There is no conclusive evidence on the length of time SARS-CoV-2 can be detected on different surfaces, and the likelihood of infectivity when the virus is detected. Study quality is moderate, and findings are inconsistent.
- Findings from laboratory-based studies indicate SARS-CoV-2 can remain viable longer on smoother surfaces such as plastic or steel than cardboard or cotton. There is wide variation in the length of times reported and study quality was not assessed.

Overview of Evidence and Knowledge Gaps

- A number of real-world studies (not conducted in a laboratory) have identified positive surface samples from a variety of surfaces within hospital wards, isolation rooms, or outbreak settings (such as cruise ships or long-term care). The prevalence of positive samples ranged from 2% to 47%.
 - Variability across studies is related to the type or location of the sample tested (e.g., bed rails, door handles, bathroom, phones and computer equipment other items in a room), the time since a confirmed case was in the setting, the cleaning procedures used and the time since last cleaning.
- Few real-world studies have looked at virus infectivity; two have reported that identified samples were not infective, one reported that the sample may be infective, and one was inconclusive.
- A number of disinfecting procedures were reported, which consistently showed a decrease or elimination of positive RT-PCR samples; however, given the variability in cleaning procedures used, no best practice recommendation can be made based on the evidence.
- Within laboratory studies, the SARS-CoV-2 virus was detectable for up to 7 days on some surfaces. However, given the concentrations used, and testing procedures, the applicability of these findings to real world settings is unknown.

Methods

Research Question

What is known about how long the virus can survive with potential for infection on surfaces?

Search

On July 24 and 27, 2020, the following databases were searched:

- Pubmed's curated COVID-19 literature hub: <u>LitCovid</u>
- <u>Trip Medical Database</u>
- World Health Organization's Global literature on coronavirus disease
- <u>COVID-19 Evidence Alerts</u> from McMaster PLUS™
- Public Health +
- <u>COVID-19 Living Overview of the Evidence (L·OVE)</u>
- McMaster Health Forum
- <u>Prospero Registry of Systematic Reviews</u>
- NCCMT <u>COVID-19 Rapid Evidence Reviews</u>
- MedRxiv preprint server
- NCCEH Environmental Health Resources for the COVID-19 Pandemic
- NCCID <u>Disease Debrief</u>
- Institute national d'excellence en santé et en services sociaux (INESSS)
- Uncover (USHER Network for COVID-19 Evidence Reviews)
- Newfoundland & Labrador Centre for Applied Health Research
- Public Health Ontario

A copy of the search strategy is available on request.

Study Selection Criteria

The search results were first screened for recent guidelines and syntheses. Single studies were included if no syntheses were available, or if single studies were published after the search was conducted in the included syntheses. English-language, peer-reviewed sources and sources published ahead-of-print before peer review were included. Surveillance sources were excluded. English-language, peer-reviewed sources and sources published ahead-of-print before peer review and sources published ahead-of-print before peer review descurces and sources published ahead-of-print before peer review are presented first, as these take into account the available body of evidence and, therefore, can be applied broadly to populations and settings.

	Inclusion Criteria	Exclusion Criteria
Population	Inanimate surfaces	
Intervention	SARS-CoV-2 exposure	Exposure through close contact with an infected individual
Comparisons	-	
Outcomes	Detection of SARS-CoV-2 virus or RNA COVID-19 infection	

Data Extraction and Synthesis

Data relevant to the research question, such as study design, setting, location, population characteristics, interventions or exposure and outcomes were extracted when reported. We synthesized the results narratively due to the variation in methodology and outcomes for the included studies.

We evaluated the quality of included evidence using critical appraisal tools as indicated by the study design below. Quality assessment was completed by one reviewer and verified by a second reviewer. Conflicts were resolved through discussion. For some of the included evidence a suitable quality appraisal tool was not found, or the review team did not have the expertise to assess methodological quality. Studies for which quality appraisal has not been conducted are noted within the data tables.

Study Design	Critical Appraisal Tool
Synthesis	Assessing the Methodological Quality of Systematic Reviews (AMSTAR)
	AMSTAR 1 Tool
Case Report	Joanna Briggs Institute (JBI) <u>Checklist for Case Reports</u>
Prevalence	Joanna Briggs Institute (JBI) <u>Checklist for Prevalence Studies</u>
•	

Completed quality assessments for each included study are available on request.

Findings

Quality of Evidence

This document includes three completed syntheses, two in-progress syntheses and 29 single studies for a total of 34 publications included in this review. The quality of the evidence included in this review is as follows:

		Total	Quality of Evidence
Syntheses	Completed	3	2 Low
			1 Moderate
	In Progress	2	
Single Studies	Completed	29	1 Low
-			13 Moderate
			12 High
			3 Not appraised

Warning

Given the need to make emerging COVID-19 evidence quickly available, many emerging studies have not been peer reviewed. As such, we advise caution when using and interpreting the evidence included in this rapid review. We have provided a summary of the quality of the evidence as low, moderate or high to support the process of decision making. Where possible, make decisions using the highest quality evidence available.

Important to this question, we did not assess the methodological quality of laboratory-based studies. Due to the technical nature of these studies, we highly recommend consulting a content-area expert to inform decision making.

Question: What is known about how long the virus can survive with potential for infection on surfaces?

Table 1: Syntheses

Reference	Date Released	Description of Included Studies	Summary of Findings	Quality Rating: Synthesis	Quality Rating: Included Studies
Usher Institute. (2020, May 27). <i>Summary: What</i> <i>is the evidence for</i> <i>outdoor transmission of</i> <i>SARS-CoV-2?</i>	May 27, 2020, search completed Apr 30, 2020	 This review included: 3 laboratory-based studies Descriptive epidemiological studies (number not reported) 	Laboratory-based studies suggest the virus may persist longer on smooth surfaces such as plastic and stainless steel and low temperature and wet environments. Real-world applicability is unknown. Epidemiological studies suggest there is potential for fecal-oral transmission through outdoor contaminated surfaces such as fences, gates, gas pumps, pedestrian crossing buttons. The	Low	Very low
Fiorillo, L., Cervino, G., Matarese, M., D'Amico, C., Surace, G., Paduano, V., Cicciù, M. (2020). <u>COVID-19 Surface</u> <u>Persistence: A Recent</u> <u>Data Summary and Its</u> <u>Importance for Medical</u> <u>and Dental Settings</u> . <i>International Journal of</i> <i>Environmental Research</i> <i>and Public Health, 17</i> (9), 3132.	Apr 30, 2020 search date not reported	This review included 4 laboratory-based studies, only one focused on SARS-CoV-2 (also included above).	likelihood of this is unknown. SARS-CoV-2 persisted longest on plastic and stainless steel. The virus was not detectable after 4h on copper and 24h on cardboard. These findings are consistent with other coronaviruses.	Moderate	Not reported

National Academies of	Mar 27, 2020	This review included:	Two lab-based studies were described,	Low	Not
Sciences, Engineering,		 Experimental laboratory- 	as well as preliminary results from in-		reported
and Medicine. (2020,		based studies	progress studies via personal		
March 27). <u><i>Rapid expert</i></u>		 Prevalence studies 	communication.		
<u>consultation update on</u>					
<u>SARS-CoV-2 surface</u>			SARS-CoV-2 showed greater stability on		
stability and incubation			smooth surfaces (glass, banknote,		
<u>for the covid-19</u>			stainless steel, plastic); no infectious		
<u>pandemic</u> .			virus was detected after 4-7 days. Also,		
			infectious viral levels were detected on		
			the outer layer of a surgical mask after 7		
			days.		
			Across prevalence studies, there were		
			variable rates of surface samples testing		
			positive for SARS-CoV-2 primarily using		
			reverse transcriptase-polymerase chain		
			reaction (RT-PCR) for testing.		
			Samples across studies were collected		
			both prior to and after cleaning/		
			disinfection, from different sites		
			(personal rooms, common areas) and		
			across different settings (hospitals,		
			cruise ship).		

Table 2: In-progress Syntheses

Title	Anticipated Release Date	Setting	Description of Document
Nora, V.D., Azevedo, N. & Rosa, D. (2020). <u>Survival of SARS-CoV-2 on different</u> <u>surfaces of the dental office and the effective</u> <u>disinfection agents</u> . PROSPERO, CRD42020188152.	Aug 20, 2020	Dental office	This systematic review aims to explore the survival time of SARS-COV-2 on different surfaces in dental offices and determine decontamination agents and concentration levels for effective disinfection.
Deliga Schroder, A.G., Guariza Filho, O., Neto, J.S., Gonçalves, F.M., Bittencourt Basso, I Nogueira Cortz Ravazzi, G.M. (2020). <u>Covid-19 survival time on inanimate</u> <u>surfaces: a systematic review</u> . PROSPERO, CRD42020185643.	Jun 30, 2020	Multiple	This systematic review aims to explore survival time of COVID-19 on different types of inanimate surfaces.

Table 3: Single Studies

Reference	Date Released	Study Design	Setting	Method of testing and timing	Summary of findings	Quality Rating:
		200.g.i	Prevalence S			
Yamagishi, T., Ohnishi, M., Matsunaga, N., Kakimoto, K., Kamiya, H., Okamoto, K., Wakita, T. (2020). <u>Environmental sampling</u> for severe acute respiratory syndrome coronavirus 2 during COVID-19 outbreak in the Diamond Princess <u>cruise ship</u> . <i>The Journal of</i> <i>Infectious Diseases</i> . Epub ahead of print.	Jul 21, 2020	Prevalence	Cruise ship Surface samples from vacant cabins of those with confirmed COVID-19 cases, cabins with no confirmed cases, and common areas.	Reverse transcription polymerase chain reaction (RT-PCR) used to detect presence of SARS- CoV-2 RNA. Samples collected 7-9 days after disinfection with 5% hydrogen peroxide.	No viable virus was detected in any of the samples. 58 of 601 (10%) samples tested positive from cabins with confirmed COVID-19 cases 1-17 days after the cabins were vacated, but not from non-case- cabins. The virus was most often detected on the bathroom floor near the toilet and bed pillows.	High
Nelson, A., Kassimatis, J., Estoque, J., Yang, C., McKee, G., Bryce, E., Schwandt, M. (2020). Environmental detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from medical equipment in long-term care facilities undergoing <u>COVID-19 outbreaks</u> . <i>American Journal of</i> <i>Infection Control</i> . Epub ahead of print.	Jul 10, 2020	Prevalence	3 long-term care facilities with confirmed outbreaks Surface samples from high-touch surfaces, communal sites, and mobile medical equipment. Patient rooms and bathrooms were excluded. Canada	RT-PCR Cleaning protocols not reported.	6 of 89 (6.7%) samples tested positive. Positive samples were found on blood pressure cuffs (n = 4), handle of a linen cart, and electronic tablet touchscreen. Infectivity of the virus was inconclusive.	High
Hu, X., Xing, Y., Ni, W., Zhang, F., Lu, S., Wang, Z., Jiang, F. (2020). Environmental contamination by SARS- CoV-2 of an imported case during incubation period. Science of The Total Environment, 742: 140620.	Jul 9, 2020	Prevalence	Isolation room Samples from rooms with confirmed COVID-19 case. China	RT-PCR Samples collected within 4 hours after case confirmed and 24 hours after disinfection with sodium hypochlorite.	 Prior to disinfection, 11 of 23 (47.8%) samples tested positive. After first disinfection, 2 of 23 (8.7%) samples tested positive. Upon third disinfection, all samples tested negative. Highest viral loads were found in the bathroom (toilet bowl and sewer inlet). 	High

Li, Y.H., Fan, Y.Z., Jiang, L., & Wang, H.B. (2020).	Jul 8, 2020	Prevalence	Hospital	RT-PCR	2 of 90 (2.2%) samples tested positive.	High
Aerosol and environmental	2020		Samples from 30 sites	Samples collected		
surface monitoring for			inside and outside	after routine twice	Positive samples were collected	
SARS-CoV-2 RNA in a			isolation wards.	daily cleaning of	7 days apart, originating from	
designated hospital for				surfaces and floors	inside a COVID-19 patient's	
severe COVID-19 patients.			China	with sodium	mask.	
Epidemiology and				dichloroisocyanurate.		
<i>Infection, 148</i> , e154.				,		
Zhou, J., Otter, J.A., Price,	Jul 8,	Prevalence	Hospital	RT-PCR	91 of 218 (41.7%) samples were	High
J.R., Cimpeanu, C., Garcia,	2020		•		suspected and 23 (10.6%) were	Ũ
D.M., Kinross, J.,			Surface samples	Viral culture	positive.	
Barclay, W.S. (2020).			collected across			
Investigating SARS-CoV-2			inpatient and	All areas were	Positive samples were more	
surface and air			outpatient units,	disinfected daily with	frequently detected in areas	
contamination in an acute			departments and	an additional twice	occupied by COVID-19 patients.	
healthcare setting during			hospital public areas.	daily disinfection of		
the peak of the COVID-19				high touch surfaces	The highest positive rates were	
pandemic in London.			England	using a combined	found on computer, keyboards,	
<i>Clinical Infectious Diseases.</i>			_	chlorine-based	mouse, alcohol gel dispensers,	
Epub ahead of print.				detergent/disinfectant.	and desk surfaces.	
					Viral culturing detected no viable	
					virus from the samples.	
Marshall, D., Bois, F.,	Jun 29,	Prevalence	Workplace	RT-PCR	Number or percent of positive	Moderate
Jensen, S. K. S., Linde, S.	2020				samples not reported.	
A., Higby, R., Remy-McCort,			9 office and mixed-	Samples were		
Y., Sudradjat, F. (2020).			used industrial	collected near end of	Workplaces with positive	
Sentinel coronavirus			locations	work shifts and prior	samples were more likely to	
environmental monitoring				to disinfection and	have employees with confirmed	
can contribute to detecting			Europe	cleaning.	cases of COVID-19.	
asymptomatic SARS-CoV-2			USA			
virus spreaders and can					Highest positive sample rates	
verify effectiveness of					were found among door handles	
workplace COVID-19					and shared furniture (break	
controls. Preprint.					room chairs, workbenches).	

High
High
Moderate

Shin, K.S., Park, H.S., Lee, J., & Lee, J.K. (2020). Environmental surface testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 2) during prolonged isolation of an asymptomatic carrier. Infection Control & Hospital Epidemiology. Epub ahead of print.	Jun 16, 2020	Prevalence	Isolation room of patients who were asymptomatic with high viral load or mildly symptomatic (sore throat only). Korea	RT-PCR Room and bathroom cleaned weekly. No specific cleaning or disinfection protocols discussed. Samples collected 4 days after last cleaning.	None of the 12 surface samples collected in patients' room or bathroom tested positive. The tested surfaces consisted of primarily plastic, stainless steel, and ceramic. Further exploration is needed to investigate risk of transmission for asymptomatic COVID-19 patients via environmental contamination.	Moderate
Zhou, Y., Zeng, Y., & Chen, C. (2020). <u>Presence of</u> <u>SARS-CoV-2 RNA in</u> <u>isolation ward environment</u> <u>28 days after exposure</u> . <i>International Journal of</i> <i>Infectious Diseases, 97:</i> 258–259.	Jun 14, 2020	Prevalence	Hospital Isolation wards of COVID-19 patients China	RT-PCR Samples were collected prior to and after cleaning and disinfection using chlorine-containing disinfectants or tissues containing peroxyacetic acid and hydrogen peroxide. Electronics were wiped using 75% alcohol or sanitary wipes.	Upon discharge, no disinfection procedures were used. 28 days later, SARS-CoV-2 was detected on pagers and patient room drawers. Following cleaning and disinfection measures, samples tested negative for SARS-CoV-2.	Low
Cheng, V.C.C., Wong, S.C., Chan, V.W.M., So, S.Y.C., Chen, J.H.K., Yip, C.C.Y Yuen, K.Y. (2020). <u>Air and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19). Infection Control & Hospital Epidemiology. Epub ahead of print.</u>	Jun 8, 2020	Prevalence	Hospital China	RT-PCR Daily environmental disinfection with sodium hypochlorite solution. Samples were collected before disinfection.	Nineteen of 377 (5%) samples tested positive. Highest positive sample rates were from patients' mobile phones, bed rails, and toilet door handles. High viral loads among COVID- 19 patients were related to increased likelihood of environmental contamination.	Moderate

Ryu, B.H., Cho, Y., Cho, O.H., Hong, S.I., Kim, S., &	Jun 3, 2020	Prevalence	Hospital	RT-PCR	Positive samples were more frequently found inside patient	High
Lee, S. (2020).			Samples collected	Standing cleaning	rooms than outside rooms	
Environmental			inside and outside	conducted with	(anteroom, corridor, nursing	
contamination of SARS-			patient rooms.	hypochlorite solution.	station).	
CoV-2 during the COVID-19						
outbreak in South Korea.			Korea	Room cleaning and	Severe contamination was	
American Journal of				disinfection was not	observed in samples collected	
Infection Control, 48(8),				performed daily.	from severely ill patients	
875–879.					compared to mild or	
					asymptomatic cases.	
					Positive surface samples	
					originated from medical	
					equipment, furniture, and	
					pillows.	
Santarpia, J.L., Rivera,	Jun 3,	Prevalence	Hospital and isolation	RT-PCR	Positive samples were collected	High
D.N., Herrera, V.,	2020		rooms at a medical		from personal items (phones,	
Morwitzer, M.J., Creager,			centre.	Viral culture test	remote controls), room surfaces	
H., Santarpia, G.W.,			United States	Curfese estables	(bedside tables, bed rails),	
Lowe, J.J. (2020). <u>Aerosol</u> and surface transmission			United States	Surface samples collected from	medical equipment, and toilets regardless of the degree of	
potential of SARS-CoV-2.				common room,	symptoms or acuity of illness.	
Preprint.				personal items, and	symptoms of acuity of inness.	
				toilets.	Viral replication was observed	
				tonets.	after 3-8 days of cell culture,	
					indicating potential viral	
					infectivity in a subset of	
					samples.	
Döhla, M., Wilbring, G.,	Jun 2,	Prevalence	Households under	RT-PCR	4 of 119 (3.36%) samples tested	Moderate
Schulte, B., Kümmerer,	2020		quarantine with at		positive. Positive samples were	
B.M., Diegmann, C., Sib, E.,			least one confirmed	Viral culture test	found on electronic devices,	
Schmithausen, R.M.			COVID-19 case		knobs/handles, and furniture.	
(2020). <u>SARS-CoV-2 in</u>				Surface samples		
environmental samples of			Germany	collected from	Viral culturing detected no viable	
quarantined households.				frequently shared	virus from the samples.	
Preprint.				objects (e.g., door		
				handles, remote		
				control).		

Wong, J.C.C., Hapuarachichi, H.C., Arivalan, S., Tien, W.P., Koo, C., Mailepessov, D., Ng, L.C. (2020). Environmental contamination of SARS- CoV-2 in a non-healthcare	Jun 2, 2020	Prevalence	Sites in which persons with confirmed COVID-19 resided or visited Singapore	RT-PCR Samples collected before and after disinfection of high touch areas (rooms, toilets, elevators) 1-3 days after occupancy.	Two of 428 (0.5%) samples tested positive originating from a bedside wall and bed handle prior to disinfection. Following disinfection and cleaning, repeated collected samples tested negative.	Moderate
setting revealed by sensitive nested RT-PCR. Preprint.				Cleaning and disinfection conducted by professional cleaning companies using various agents.		
Zhang, D., Yang, Y., Huang, X., Jiang, J., Li, M., Zhang, X., Qu, J. (2020). <u>SARS-</u> <u>CoV-2 spillover into</u> <u>hospital outdoor</u> <u>environments</u> . <i>Preprint</i> .	May 19, 2020	Prevalence	Hospital China	RT-PCR Samples collected from outdoor hospital areas (wastewater, soil, roads and walls). Cleaning and disinfection not reported.	SARS-CoV-2 was detected in wastewater and soil samples in areas close to hospital departments which received COVID-19 patients. SARS-CoV-2 was not detected on road or wall surfaces which are regularly disinfected.	High
Jiang, F.C., Jiang, X.L., Wang, Z.G., Meng, Z.H., Shao, S.F., Anderson, B.D., & Ma, M.J. (2020). <u>Detection of severe acute</u> <u>respiratory syndrome</u> <u>coronavirus 2 RNA on</u> <u>surfaces in quarantine</u> <u>rooms</u> . <i>Emerging Infectious</i> <i>Diseases</i> . Epub ahead of print.	May 18, 2020	Prevalence	Hospital China	RT-PCR Samples collected 3 hours after patients identified positive for SARS-CoV-2 RNA.	8 of 22 (36%) samples tested positive. SARS-CoV-2 was detected in the surface samples of the pillow cover, duvet cover, and sheets.	Moderate

Bloise, I., Gómez-Arroyo, B., & García-Rodríguez, J. (2020). <u>Detection of SARS-</u> <u>CoV-2 on high-touch</u> <u>surfaces in a clinical</u> <u>microbiology laboratory</u> . <i>The Journal of Hospital</i> <i>Infection</i> . Epub ahead of print.	May 15, 2020	Prevalence	Clinical microbiology laboratory with high density of samples tested for COVID-19 Samples from high touch surfaces Spain	RT-PCR Cleaning and disinfection protocols not reported.	 4 of 22 (18%) samples tested positive. Positive samples were found on commonly used objects, such as keyboards, telephones and computer mouse, representing potential sources of infection for laboratory personnel. 	Moderate
Wu, S., Wang, Y., Jin, X., Tian, J., Liu, J., & Mao, Y. (2020). <u>Environmental</u> <u>contamination by SARS-</u> <u>CoV-2 in a designated</u> <u>hospital for coronavirus</u> <u>disease 2019</u> . <i>American</i> <i>Journal of Infection</i> <i>Control, 48</i> (8), 910–914.	May 12, 2020	Prevalence	COVID-19 designated hospital Samples collected from high touch surfaces in morning prior to disinfection and cleaning. China	RT-PCR Cleaning protocols included twice daily surface cleaning and disinfection using a chlorine-based spray disinfectant, conducted by trained volunteers.	Thirty-six of 145 (24.8%) samples tested positive. Highest positive sample rates were from the surface of beepers, water machine buttons, elevator buttons, computer mouses, telephones, and keyboards.	Moderate
Abrahao, J.S., Pengo, L.S., Rezende, I.M., Rodrigues, R., Crispim, A.P.C., Moura, C., Drumond, B.P. (2020). <u>Detection of SARS-CoV-2</u> <u>RNA on public surfaces in a</u> <u>densely populated urban</u> <u>area of Brazil</u> . <i>Preprint</i> .	May 8, 2020	Prevalence	Public places (near hospital and public transportation areas) in region with highest number of reported COVID-19 cases Brazil	RT-PCR No information on cleaning protocols of public surfaces.	Sixteen of 101 (16.8%) samples tested positive. Positive samples were found on metal and concrete surfaces at hospital bus stations (bench, ground), hospital sidewalks, bus terminals (handrails), and public square seating (table and benches).	High

Lee, S.E., Lee, D.Y., Lee, W.G., Kang, B., Jang, Y.S., Ryu, B., Lee, E. (2020). Detection of novel coronavirus on the surface of environmental materials contaminated by COVID-19 patients in the Republic of Korea. Osong Public Health and Research Perspectives, 11(3), 128–132.	May 8, 2020	Prevalence	6 hospitals and 2 communal facilities (rehab centre and apartments) with COVID-19 outbreaks Korea	RT-PCR Samples collected from high touch surfaces (e.g., phones, bedrails, chairs, door handles). No information on cleaning protocols was included.	All 68 samples from hospitals tested negative. Samples were collected after disinfection and cleaning. 2 of 12 (16.7%) samples from communal facilities where disinfection and cleaning had not been conducted prior to collection tested positive. Both samples were from a door handle of a COVID-19 positive patient's room.	Moderate
Ye, G., Lin, H., Chen, S., Wang, S., Zeng, Z., Wang, W., Wang, X. (2020). Environmental contamination of SARS- CoV-2 in healthcare premises. Journal of Infection, 81(2), e1–e5.	Apr 30, 2020	Prevalence	Hospital Three sets of samples were collected across major hospital function zones, hospital equipment and medical supplies, and healthcare workers' used personal protective equipment. China	RT-PCR No information on cleaning protocols was included.	 85 of 626 (13.6%) samples tested positive. Highest positive rates were found in intensive care unit, obstetric isolation ward, and COVID-19 isolation ward. 60 of 431 (13.9%) samples from hospital objects tested positive. Highest positive sample rates were found among self-service printers, desktops/keyboards, and door handles. 25 of 195 (12.8%) samples from personal protective equipment tested positive. Highest rates were found for hand sanitizer dispensers and gloves. 	Moderate

Ding, Z., Qian, H., Xu, B.,	Apr 7,	Prevalence	4 occupied isolation	RT-PCR	7 of 107 (6.5%) samples tested	High
Huang, Y., Miao, T., Yen,	2020		rooms housing 10		positive; 4 tested positive and 3	
H.L, Li, Y. (2020). <u>Toilets</u>			COVID-19 patients	Samples collected on	weakly positive.	
dominate environmental			and other non-	three separate days in		
detection of SARS-CoV-2			isolation room areas	the morning before	5 of 7 positive samples were	
virus in a hospital. Preprint.			(nursing station,	cleaning.	from surfaces in patient	
			corridor, storage or		bathrooms (toilet seat, toilet seat	
			cleaner's rooms,	Cleaning protocols	cover, door handle, exhaust	
			change room)	included twice daily	grille, tap-lever). 2 of 7 positive	
				cleaning of high touch	samples originated from the	
			China	surfaces cleaned with	inside door handles of patients'	
				sodium	rooms.	
				dichloroisocyanurate		
				solution over 1.5 hour.		
Colaneri, M., Seminari, E.,	May 22,	Prevalence	Infectious Disease	RT-PCR	2 of 26 (7.7%) of samples tested	Moderate
Novati, S., Asperges, E.,	2020		Emergency Unit,		positive with low-levels of SARS-	
Biscarini, S., Piralla, A.,			where febrile patients	Viral culture test	CoV-2 RNA. Both samples were	
Vecchia, M. (2020). Severe			with respiratory		collected on the external plastic	
acute respiratory syndrome			symptoms were	Samples collected ~ 4	surface of continuous positive	
coronavirus 2 RNA			evaluated	hours after cleaning.	airway pressure helmets.	
contamination of inanimate						
surfaces and virus viability			Infectious disease	Ward surfaces cleaned	None of the 26 samples	
in a health care emergency			sub-intensive care	twice daily with	demonstrated viral infectivity.	
unit. Clinical Microbiology			ward for advanced	sodium hypochlorite;		
and Infection, 26(8),			respiratory care	free chlorine (0.5%)	Study limitation includes that	
1094.e1-1094.e5.				after patient	swabs were collected relatively	
			Italv	discharged.	close to the cleaning procedures.	
			itary	albonargea.	procedures.	

Ong, S.W.X., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S.Y., & Marimuthu, K. (2020). <u>Air,</u> <u>surface environmental, and</u> <u>personal protective</u> <u>equipment contamination</u> <u>by Severe Acute</u> <u>Respiratory Syndrome</u> <u>Coronavirus 2 (SARS-CoV-</u>	Mar 4, 2020	Prevalence	Hospital Samples collected from 26 sites on 5 days over a 2-week period after routine cleaning in two patient rooms and before cleaning in one patient room.	RT-PCR Viral culture test Twice-daily cleaning of high-touch areas and daily cleaning of floors with sodium dichloroisocyanurate.	 After routine cleaning: Patient A's room sampled on days 4 and 10 of symptomatic illness; all samples were negative. Patient B's room sampled on symptomatic day 8 and asymptomatic day 11; all samples were negative 	Moderate
2) from a symptomatic patient. JAMA, 323(16), 1610–1612.			Samples also taken from personal protective equipment. Singapore		 Before routine cleaning: 13 of 15 (87%) room sites, including air outlet fans were positive 3 of 5 (60%) toilet sites (toilet bowl, sink, and door handle) were positive 	
					Anteroom and corridor samples were negative. Swabs taken from the air exhaust outlets tested positive (number not reported). One swab from personal protective equipment, from the surface of a shoe front, was positive (total number not reported).	
		1	Laboratory S			1
Pelisser, M., Thompson, J., Majra, D., Youhanna, S., Stebbing, J., & Davies, P. (2020). <u>Sports balls as</u> <u>potential SARS-CoV-2</u> <u>transmission vectors</u> . <i>Public Health in Practice 1:</i> 100029.	Jul 10, 2020	Laboratory	Sports equipment with inactivated virus pipetted directly onto the surface in a lab UK	Testing protocol not reported.	Surfaces of sports balls were tested before and after disinfection, and after use on a grass field. All samples tested negative. The authors note a limitation to the study may have been the method used to transfer the	Not appraised
					virus to surfaces using polyester swabs which may not have been effective.	

Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X., & Charrel, R.N. (2020). <u>Prolonged infectivity of</u> <u>SARS-CoV-2 in fomites</u> . <i>Emerging Infectious</i> <i>Diseases</i> . Epub ahead of print.	Jun 24, 2020	Laboratory	SARS-CoV-2 deposited on polystyrene plastic, aluminum, and glass for 96 hours France	Viral culture test	SARS-CoV-2 demonstrated viral stability for 96 hours on all tested surfaces. Protein mediums increased SARS-CoV-2 infectivity, suggesting that protein-rich mediums such as airway secretions can protect the expelled virus, potentially enhancing persistence and transmission via contaminated surfaces.	Not appraised
Liu, Y., Li, T., Deng, Y., Liu, S., Zhang, D., Li, H., Li, J. (2020). <u>Stability of SARS-</u> <u>CoV-2 on environmental</u> <u>surfaces and in human</u> <u>excreta</u> . <i>Preprint</i> .	May 12, 2020	Laboratory	Steel, plastic, glass, ceramics, paper, cotton, wood, latex gloves, surgical mask deposited and left for 7 days China	Viral culture test	The virus remained stable and viable for seven days on surfaces of plastic, stainless steel, glass, ceramics, wood, latex gloves and surgical mask. The virus did not remain infectious after 4 days on cotton clothes and after 5 days on paper. In both of these materials, rapid loss of virus infectivity was observed within 1 hour after incubation. Across most of the tested conditions, in the initial phase of viral decay, loss of infectivity was rapid, whereas in the terminal phase, viral infectivity decreased slowly.	Not appraised

References

Abrahao, J.S., Pengo, L.S., Rezende, I.M., Rodrigues, R., Crispim, A.P.C., Moura, C., ... Drumond, B.P. (2020). <u>Detection of SARS-CoV-2 RNA on public surfaces in a densely populated</u> <u>urban area of Brazil</u>. *Preprint*.

Bloise, I., Gómez-Arroyo, B., & García-Rodríguez, J. (2020). <u>Detection of SARS-CoV-2 on high-touch surfaces in a clinical microbiology laboratory</u>. *The Journal of Hospital Infection*. Epub ahead of print.

Cheng, V.C.C., Wong, S.C., Chan, V.W.M., So, S.Y.C., Chen, J.H.K., Yip, C.C.Y., ... Yuen, K.Y. (2020). <u>Air and environmental sampling for SARS-CoV-2 around hospitalized patients with</u> <u>coronavirus disease 2019 (COVID-19)</u>. *Infection Control & Hospital Epidemiology*. Epub ahead of print.

Colaneri, M., Seminari, E., Novati, S., Asperges, E., Biscarini, S., Piralla, A., ... Vecchia, M. (2020). <u>Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit</u>. *Clinical Microbiology and Infection*, *26*(8), 1094.e1-1094.e5.

Deliga Schroder, A.G., Guariza Filho, O., Neto, J.S., Gonçalves, F.M., Bittencourt Basso, I., Sampaio Santos, R., ... Nogueira Cortz Ravazzi, G.M. (2020). *<u>Covid-19 survival time on</u> inanimate surfaces: a systematic review*. *PROSPERO, CRD42020185643*.

Ding, Z., Qian, H., Xu, B., Huang, Y., Miao, T., Yen, H.L, ... Li, Y. (2020). <u>Toilets dominate</u> environmental detection of SARS-CoV-2 virus in a hospital. *Preprint*.

Döhla, M., Wilbring, G., Schulte, B., Kümmerer, B.M., Diegmann, C., Sib, E., ... Schmithausen, R.M. (2020). <u>SARS-CoV-2 in environmental samples of quarantined households</u>. *Preprint.*

Fiorillo, L., Cervino, G., Matarese, M., D'Amico, C., Surace, G., Paduano, V., ... Cicciù, M. (2020). <u>COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and</u> <u>Dental Settings</u>. *International Journal of Environmental Research and Public Health*, *17*(9), 3132.

Hu, X., Xing, Y., Ni, W., Zhang, F., Lu, S., Wang, Z., ... Jiang, F. (2020). <u>Environmental</u> <u>contamination by SARS-CoV-2 of an imported case during incubation period</u>. *Science of The Total Environment*, *742:* 140620.

Jiang, F.C., Jiang, X.L., Wang, Z.G., Meng, Z.H., Shao, S.F., Anderson, B.D., & Ma, M.J. (2020). <u>Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine</u> <u>rooms</u>. *Emerging Infectious Diseases*. Epub ahead of print.

Lee, S.E., Lee, D.Y., Lee, W.G., Kang, B., Jang, Y.S., Ryu, B., ... Lee, E. (2020). <u>Detection of novel</u> <u>coronavirus on the surface of environmental materials contaminated by COVID-19 patients in</u> <u>the Republic of Korea</u>. *Osong Public Health and Research Perspectives*, *11*(3): 128–132.

Lei, H., Ye, F., Liu, X., Huang, Z., Ling, S., Jiang, Z., ... Zanin, M. (2020). <u>SARS-CoV-2</u> <u>environmental contamination associated with persistently infected COVID-19 patients</u>. *Influenza and Other Respiratory Viruses*. Epub ahead of print. Li, Y.H., Fan, Y.Z., Jiang, L., & Wang, H.B. (2020). <u>Aerosol and environmental surface</u> <u>monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients</u>. *Epidemiology and Infection*, *148*, e154.

Liu, Y., Li, T., Deng, Y., Liu, S., Zhang, D., Li, H., ... Li, J. (2020). <u>Stability of SARS-CoV-2 on</u> environmental surfaces and in human excreta. *Preprint*.

Marshall, D., Bois, F., Jensen, S. K. S., Linde, S. A., Higby, R., Remy-McCort, Y., ... Sudradjat, F. (2020). <u>Sentinel coronavirus environmental monitoring can contribute to detecting</u> asymptomatic SARS-CoV-2 virus spreaders and can verify effectiveness of workplace COVID-19 controls. *Preprint*.

National Academies of Sciences, Engineering, and Medicine. (2020, March 27). <u>Rapid expert</u> <u>consultation update on SARS-CoV-2 surface stability and incubation for the covid-19</u> <u>pandemic</u>.

Nelson, A., Kassimatis, J., Estoque, J., Yang, C., McKee, G., Bryce, E., ... Schwandt, M. (2020). <u>Environmental detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)</u> <u>from medical equipment in long-term care facilities undergoing COVID-19 outbreaks</u>. *American Journal of Infection Control*. Epub ahead of print.

Nora, V.D., Azevedo, N. & Rosa, D. (2020). *Survival of SARS-CoV-2 on different surfaces of the dental office and the effective disinfection agents. PROSPERO, CRD42020188152.*

Ong, S.W.X., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S.Y., & Marimuthu, K. (2020). <u>Air, surface environmental, and personal protective equipment contamination by Severe Acute</u> <u>Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient</u>. *JAMA*, *323*(16), 1610–1612.

Pastorino, B., Touret, F., Gilles, M., de Lamballerie, X., & Charrel, R.N. (2020). <u>Prolonged</u> <u>infectivity of SARS-CoV-2 in fomites</u>. *Emerging Infectious Diseases*. Epub ahead of print.

Pelisser, M., Thompson, J., Majra, D., Youhanna, S., Stebbing, J., & Davies, P. (2020). <u>Sports</u> balls as potential SARS-CoV-2 transmission vectors. *Public Health in Practice 1:* 100029.

Razzini, K., Castrica, M., Menchetti, L., Maggi, L., Negroni, L., Orfeo, N. V., ... Balzaretti, C. M. (2020). <u>SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy</u>. *Science of The Total Environment*, *742*: 140540.

Ryu, B.H., Cho, Y., Cho, O.H., Hong, S.I., Kim, S., & Lee, S. (2020). <u>Environmental</u> <u>contamination of SARS-CoV-2 during the COVID-19 outbreak in South Korea</u>. *American Journal of Infection Control*, *48*(8), 875–879.

Santarpia, J.L., Rivera, D.N., Herrera, V., Morwitzer, M.J., Creager, H., Santarpia, G.W., ... Lowe, J.J. (2020). <u>Aerosol and surface transmission potential of SARS-CoV-2</u>. *Preprint.*

Shin, K.S., Park, H.S., Lee, J., & Lee, J.K. (2020). <u>Environmental surface testing for severe acute</u> respiratory syndrome coronavirus 2 (SARS-CoV-2) during prolonged isolation of an asymptomatic carrier. *Infection Control & Hospital Epidemiology*. Epub ahead of print.

Usher Institute. (2020, May 27). <u>Summary: What is the evidence for outdoor transmission of</u> <u>SARS-CoV-2?</u> Wei, L., Lin, J., Duan, X., Huang, W., Lu, X., Zhou, J., & Zong, Z. (2020). <u>Asymptomatic COVID-19 patients can contaminate their surroundings: An environment sampling study</u>. *MSphere*, *5*(3), e00442-20.

Wong, J.C.C., Hapuarachichi, H.C., Arivalan, S., Tien, W.P., Koo, C., Mailepessov, D., ... Ng, L.C. (2020). <u>Environmental contamination of SARS-CoV-2 in a non-healthcare setting revealed by</u> <u>sensitive nested RT-PCR</u>. *Preprint*.

Wu, S., Wang, Y., Jin, X., Tian, J., Liu, J., & Mao, Y. (2020). <u>Environmental contamination by</u> <u>SARS-CoV-2 in a designated hospital for coronavirus disease 2019</u>. *American Journal of Infection Control, 48*(8), 910–914.

Yamagishi, T., Ohnishi, M., Matsunaga, N., Kakimoto, K., Kamiya, H., Okamoto, K., ... Wakita, T. (2020). <u>Environmental sampling for severe acute respiratory syndrome coronavirus 2 during</u> <u>COVID-19 outbreak in the Diamond Princess cruise ship</u>. *The Journal of Infectious Diseases*. Epub ahead of print.

Ye, G., Lin, H., Chen, S., Wang, S., Zeng, Z., Wang, W., ... Wang, X. (2020). <u>Environmental</u> <u>contamination of SARS-CoV-2 in healthcare premises</u>. *Journal of Infection*, *81*(2), e1–e5.

Zhang, D., Yang, Y., Huang, X., Jiang, J., Li, M., Zhang, X., ... Qu, J. (2020). <u>SARS-CoV-2</u> <u>spillover into hospital outdoor environments</u>. *Preprint.*

Zhou, J., Otter, J.A., Price, J.R., Cimpeanu, C., Garcia, D.M., Kinross, J., ... Barclay, W.S. (2020). Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. *Clinical Infectious Diseases*. Epub ahead of print

Zhou, Y., Zeng, Y., & Chen, C. (2020). <u>Presence of SARS-CoV-2 RNA in isolation ward</u> <u>environment 28 days after exposure</u>. *International Journal of Infectious Diseases*, *97*, 258–259.